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Chapter 7: Image Decimation, Interpolation and Sampling Rate Conversion 
1-D Decimation and Interpolation Theory 

Decimation: Decimation by a factor of M can be modeled in two steps:  
1. Multiply a sample array by a sparse impulse train, called the sub-sampling function.  
2. Remove zero samples. 
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Decimation will result in aliasing if the resulting sampling rate is un the Nyquist rate. This can be 
shown mathematically in the Fourier domain. The Fourier series of the periodic sub-sampling 
function can be written by: 
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Write the Fourier series expansion of the sampling function g(n): 
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We now write the Fourier transform of  the decimated result y(n) by using a simple change of 
variables Mn=η  
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It is the usual scaling property of the Fourier transform. 
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Clearly, if the signal was over-sampled by at least a factor of M, i.e: ππ <≤= ||/0)( wMforwF  
then there will be no aliasing after decimation. However, if this condition is NOT met then a digital 
low-pass filter with a frequency response: 
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should be applied to the input f(n) prior to decimation to avoid aliasing, which is called a digital anti-
alias filter, as illustrated below. 

 
 

Interpolation: Interpolation by a factor of L can be similarly realized in two steps:  
1. Fill-in L-1 zeros in between every sample of the input signal to obtain a higher rate signal. 
2. Followed by proper low-pass filtering as shown below. 

 
Zero-filling operation can be expressed by: 
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Opposite to the case of decimation the effect of zero-fill in the frequency domain is a compression of 
the frequency axis as seen by: 
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where we employ the change of variables n’=n/L. This is iluustrated below. 
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Corresponding ideal low-pass filter to remove unwanted copies in the interval -π < ω ≤  π will 
be:  
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This results in an interpolated signal y(n). 

 

Sampling Rate Change by a Rational Factor: Sampling rate change by a rational factor of L/M 
corresponds to:  

1. Interpolation by an integer factor of L followed by  
2. Decimation by an integer factor of M.  

Therefore, we can cascade the two systems we learned above as shown below to realize sampling rate 
change by a rational factor. 

 
Clearly, the back-to-back low-pass filters can be combined to simplify the system: 

 

Efficient and yet eloquent implementation of this system is usually done by using polyphase filters in 
the DSP community. 
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Practical Image Decimation and Interpolation 

 
Both decimation and interpolation require ideal low-pass filtering. The impulse response of an ideal 
low-pass filter being a Sinc(x) function has infinitely many periodic zero-crossings, clearly, 
interpolation by a Sinc function in the frequency-domain is unrealizable. Therefore, a realizable 
approximation must replace it.  

Decimation by Averaging: Generally, simple averaging or Gaussian weighting with the parameter 
σ is employed in the decimation process.  
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where K is a normalization factor such that summation of all weights equals 1. 

Example: 4:2:0  Decimation of color information (chrominance) used in many video compression 
standards. 

 
Zero-Order Hold Interpolation:   

 
This is the simplest form of interpolation also known as pixel replication method. The impulse 
response of the zero-order hold filter is a rectangular function (length L), as shown below, which 
implies that its frequency response is given by a Sinc(x) function with the first zero crossing at 
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Linear Interpolation (First-order Hold): Linear interpolation is probably the most popular choice 
because of simplicity of its implementation. The impulse response of the linear interpolation filter is 
given by the triangle function, which implies its frequency response is given by (Sinc)2 function. 
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Cubic Convolution Interpolation: Cubic convolution interpolation kernel approximates the impulse 
response of the ideal lowpass filter (Sinc function) by three cubic polynomial pieces with a 
significantly better frequency response. 

 
Cubic convolution interpolation kernel is used for converting the samples into a continuous signal. 
Then the desired interpolation ratio is obtained by re-sampling the continuous signal. Continuous 
cubic convolution interpolation kernel in the interval (-2, 2) is given by: 
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which implies that we need use four existing samples (two on each side) to perform the interpolation. 
The following regularity constraints are imposed on the kernel: 
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As a result, we have 7 equations in 8 unknowns. Thus, we let pb =3 , a free parameter. Solving these 
7 equations in terms of p gives the following interpolation kernel: 
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If we require the interval  to be concave upward with 10 <≤ t 0)0(2

2
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d   and  to be 

concave downward with 
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2
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d  and we restrict the range of p to -3 < p <0. The most common 

choices are p=-0.5 or p=-1. The impulse response of the cubic convolution interpolator for any value 
of L can be obtained by sampling h(t) with 4L+1 samples in the interval .22 <≤− t .  
Since h(-2)=h(2)=0, this implies 4L-1 samples excluding end points. Finally,  we can assume that 
Two-D interpolation kernel is separable, h(n1,n2) = h1(n1) h2(n2). 
 
Example: Cubic convolution interpolation kernel for 25.0 =−= Landp  is found by substituting 
first  into above kernel equation: 5.0−=p
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The length of the impulse response for L=2 is 7 (excluding the end points) and sampling points are 
t=-1.5, -1, -0.5, 0, 0.5, 1, 1.5. The impulse response is given by:  

 
Wiener Interpolation Filtering:  An optimal interpolation filter design strategy is to minimize the 
mean square interpolation error using the correlation function of the image (to be interpolated). For a 
filter with symmetric impulse response, interpolation by a factor of L=2 can be expressed as: 
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In the usual optimization procedure based on mean-square error minimization, we differentiate the 
expected value of the error function with respect to h(k) and set it to zero:  
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and solve for unknowns: 
which gives Lw equations Lw in unknowns as 
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The inner products are nothing but correlation function  of the image f(n) and this system of 
linear equations. We now need to solve linear equations in unknowns: 
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subject to the constraint: . These equations are very frequently seen in communications, 

DSP, and optimization theory, there are tedious techniques involving matrix inversions or Levinson 
Recursion techniques (Durbin, Burg, La Roux-Geugen and other algorithms) as used in speech 
prediction. 
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Decimation and Interpolation on Lattices: Let us define sum (more appropriately “union” and 
intersection of two lattices by: 
 };{ 22112121 Λ∈Λ∈+=Λ+Λ xandxxx  };{ 2121 Λ∈Λ∈=Λ∪Λ xandxx  
 
Conversion from a lattice  to another lattice 1Λ 2Λ  can be modeled by up-conversion from 1Λ  to the 
sum of  followed by ideal LPF on 21 Λ+Λ 21 Λ+Λ , followed by down-conversion to . 2Λ
 
General block diagram for rate conversion, which is the standard process for NTSC-to-PAL and the 
inverse conversion, is shown below. 

 

 

 
Sampling rate conversion based on lattices: Up-conversion (top); down-conversion (middle),  

and arbitrary rate conversion (bottom). 
Up-conversion: Since , we can transfer all samples in 21 Λ⊂Λ 1Λ  into 2Λ  and fill the missing 
places with zeros: 
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where  stands for the samples at the output of up-sampler and )(3, xgS 12 \ΛΛ represents set of point 
in  but not in . To fill zero-padded samples, we need to apply an interpolation filter.  Let us 
sample the input signal (continuous version) directly over 

2Λ 1Λ

2Λ  with a generating matrix V2, and the 
sampling density: |   then the FT of the sampled signal would be:  )det(|/1)( 22 Λ=Λd
   with the property:  ∑ −Λ=
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On the other hand, the FT of the signal sampled over 1Λ  with a generating matrix V1  is given by: 
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   with the property:  ∑ −Λ=
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Assuming that  satisfies the alias-free condition then there will be no overlapping between the 
alias components in . Under these conditions, the frequency response of the “ideal” interpolation 
filter would be: 
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Example: Consider the up-conversion in the following figure. Suppose that the original signal has a 
circular support, (it could also be a diamond as well). It is clear that 21 Λ⊂Λ  

 

Matrices in this case are:      ⎥
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Reciprocal lattices and their Voronoi cells are also shown in the figure. It is also clear that  
and the ideal filter in this case would be: 
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as illustrated on lattice .  This filter can be used to eliminate alias components of  that should 
not appear in . 
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Down-conversion: In this case, 21 Λ⊃Λ  and we can obtain  by retaining all samples in 
that are also in  and discard all others: 
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This signal as obtained would be exactly the same as the one resulting from sampling the original 
continuous signal over ,  if there was one or obtained through D/A conversion. Suppose that the 
support region of the original continuous signal is equal or smaller than , so that there is nop 
aliasing in . But there will be aliasing in  as  is smaller. To avoid aliasing then we 
need to pre-filter the input with a filter: 
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Example: Consider the down-conversion in the above figure. 
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The ideal pre-filter is given by:   
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Without pre-filtering, the original circular spectrum would have caused alasing in . By applying 
in , only the portion of the spectrum contained in  is retained.  
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Arbitrary rate-conversion: When and 1Λ 2Λ  are not subsets of each other, as in the case of NTSC 
to PAL conversion rate, we need to introduce another lattice 3Λ , smallest one as possible, so that the 
other two are common divisors of this new large lattice. Then the process is the concatenation of the 
up-conversion and down-conversion cases discussed above. The interpolation filter and the pre-filter 
in this case would be: 
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It is common practice to merge these two filters into one described by: 
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Example: Consider the conversion between two sampling lattices 1Λ and  shown above with 
generating matrices: 

2Λ
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In this case and  are not subsets of each other, so, we need to use a new lattice 1Λ 2Λ 3Λ  that is 
smallest lattice which contains both. In this case, 3Λ  can be determined from by the sum of 1Λ and 

 if contains only rational numbers, which is the generalization of the one-D case for 
. In our case, a careful observation of the figure shows that 

2Λ 2
1

1 .VV −

qpnumberrationalr // 21 =ΛΛ== 3Λ  
must be the square lattice sketched in the figure and the identity matrix will do as the generating 
matrix: 
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From these three lattices, we can determine their Voronoi cells individually and the intermediate filter 
needs to be: 
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 Sampling rate conversion of video: In many applications including the NTSC-to-PAL, and vice 
versa, translation, sampling rate conversion is needed. Recall that PAL signal on an NTSC system 

requires the conversion of an interlaced signal with a sampling rate of 
s

fieldsF tS 50, = and 

frame
linesF yS 625, =  into another interlaced signal with 

s
fieldsF tS 60, =  and

frame
linesF yS 525, = .  Yet 

in many applications, one needs to convert an interlaced signal into a progressive raster, commonly 
known as “de-interlacing.”  
 
De-interlacing example: Consider the following scenario: 

 
Sampling intervals:  and st 60/1=Δ framelinesy /525/1=Δ  
Corresponding sampling lattice and its reciprocal is shown below. Note that the picture has been 
scaled to represent  and with same length for graphical ease. tΔ yΔ
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Sampling lattice and reciprocal corresponding to interlaced scan.  

 
Sampling lattice and reciprocal after de-interlacing.  
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In this case,  since , the problem is an up-conversion problem and the interpolation filter is 
given by: 

21 Λ⊂Λ
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The Voronoi cells of this filter is also shown above.  The magnitude of this filter is shown below 
(left). 

 
This is an ideal low-pass filter with a diamond shape pass-band. Since it cannot be decomposed into a 
product of a temporal filter and a vertical filter, it is not separable, which requires a two-D filter 
design. In practice, many simpler filters have been proposed for de-interlacing. The simplest is “line 
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averaging,” which generates a missing line from the average of the line above and below.  Using this 
for field t, we can use  and the equivalent filter in 2/)( ECD += 2Λ  will be: 
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and the frequency response of this filter is given by: 
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which is shown above (right). Higher-order averaging (more lines) can be used to improve this 
vertical interpolation. 
Alternately, we can use temporal interpolation as well. Since there is line in the next field for every 
missing line in the current field, we can copy this corresponding line:  This is 
called “field merging.” Corresponding and the equivalent filter and its frequency response for de-
interlacing the top field are: 
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But this filter is asymmetric and complex, causing implementation issues. Instead, “field averaging” 
can be used similar to the line averaging case. The filter function and the frequency response will be: 
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which is shown below (left). 

  
Finally, to compromise between spatial and temporal artifacts from using one-sided averaging, a 
technique combining the two has been developed and it is called “line and field averaging,” which 
uses:  . The filter and the frequency response are given by: 4/)( RKECD +++=

  ),0
0

(),,0(),0,(),0,(),(4/1
)0,0(),(1

),( ttyylfa

Otherwise
ty

ty
tyh Δ−

⎪
⎩

⎪
⎨

⎧
ΔΔ−Δ=

=
=

  
 )2()2(1),( ttyytylfa fCosfCosffH Δ+Δ+= ππ  
which is shown also above (right). 
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PAL-to-NTSC Conversion example: This process is significantly more difficult than the de-
interlacing problem since the temporal and vertical sampling rates are not integer multiples of each 
other. We need to come up with a  that contains both 3Λ 1Λ  and 2Λ .  By observing 6251, =yF  and 

 yields . Also, 5252, =yF 125,133, =yF 501, =tF  and 602, =tF  results in .  These require a 
corresponding rectangular lattice such rates as shown in part c below. 

3003, =tF

 
 

Desired frequency response of the filter over 3Λ  is given by: 
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The ideal conversion filter has the shape shown above part c. This procedure is known as “direct 
conversion,” but more frequently a sequential approach is used in practice as shown below. 
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The modified approach is composed of: 

(1) De-interlacing each field in the PAL signal into a frame format with 625 lines. 
(2) Line rate conversion from 625 to 525. 
(3) Frame rate conversion from 50 to 60 Hz. 
(4) Splitting each frame into two interlacing fields. 

The frequency response of PAL-to-NTSC conversion filters: Ideal filter (left), composite filter 
corresponding to the concatenation of  above (middle) and frame-rate up-conversion 
stage )right.) 

32 HandH

 
Finally, the task of converting 625 lines into 525 (down-conversion) is done by converting every 25 
lines into 21 lines and using the two nearest known lines (upper row). For each line in the bottom 
row, the interpolation coefficient associated with the left neighboring line in the upper row is given in 
the figure. The interpolation coefficient for the right neighboring line is one minus the left coefficient. 
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The equivalent vertical filter in  is given by: 3Λ

 
⎪⎩

⎪
⎨
⎧ =Δ=−=

Otherwise

nnyifn
yh y

v
0

20,,2,1,0||;.
2

||1)( 3, L  

The corresponding equivalent temporal filter over the 300-frame grid is given by: 

 
⎪⎩

⎪
⎨
⎧ =Δ=−=

Otherwise
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yh tk

t
0
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6
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Compared to the desired response (a) the concatenated solution leads to blurred transitions and many 
ripples in the stop-band. To improve the results “de-blurring” enhancement techniques are normally 
applied. In addition motion-adaptive interpolation is also used in high-end imaging systems1. 
 
 

                                                           
1 This segment is summarized from Chapter 4 of Wang, Ostermann and Zhang. 
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