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Chapter 6: Two-D and Multi-D Sampling Theory and Reconstruction 
Ideal 2-D Rectangular Sampling and Reconstruction 

Spatial-Domain Model:  )2.22
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Frequency-Domain Model:  )
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The spectrum of the sampled image is periodic with the horizontal and vertical periods 1/2 xΔπ  and 

2/2 xΔπ  in radians/length. Assuming that is band-limited with (Ω1,Ω2), that is:  ),( 21 uuFS

  { }220),( 221121 BandBforuuFS ππ >Ω>Ω=    

where {BB1,B2} are bandwidths in each direction. Then the Nyquist Rate for two-D rectangular 
sampling is given by:  and 11 2/1 Bx <Δ .2/1 22 Bx <Δ  

 
If the Nyquist rate is not satisfied, then sampled signal spectrum suffers from usual aliasing or 
spectrum foldover as in the one-D case. 
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In real-life image acquisition systems, we need to employ anti-aliasing filtering to prevent spectral 
foldover during the rest of the processing. This is normally achieved by a continuous-domain low-

pass filter to bandlimit the image under consideration to the rectangle: ]1,1[
11 xx Δ

+
Δ
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+
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. 

Sampling with Finite Aperture: 
Space Domain Model: A real–life sensor has a finite size, which results in averaging of image 
intensity values over a finite area, often referred as a finite sampling aperture. Sampling with a finite 
aperture is modeled by: 
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where denotes the finite aperture function, which can also be expressed in terms of the 
two-D Sifting Theorem: 
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Similarly, in the frequency domain: 
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Hence, the effect in the frequency domain is to replicate smoothed versions of the original spectrum. 

Reconstruction from Samples: An analog function can be reconstructed from the samples using 
  )2,1(.)2,1()2,1( 2211Re
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The reconstructed analog signal is equal to the original analog signal under assumptions: 
1. There is no aliasing; i.e., the spectrum of the original continuous domain image is confined 

within the rectangle ]1,1[
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+
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+
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2. Reconstruction is performed using an ideal reconstruction filter, which is unrealizable, where 

the ideal reconstructed image, in the frequency domain, is given by:  
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If we take the inverse Fourier transform of the above ideal reconstructed image we obtain: 
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Therefore, the impulse response of the ideal reconstruction filter is simply: 
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It is the well-known ideal reconstruction process in the one-D Nyquist sampling. Here the similar 
process takes place also for the second dimension. The ideal bandlimited interpolation benefits from 
the periodic zero crossings of the sinc function. However, the sinc function is infinite-extent, which 
implies that interpolation for each x value requires all of the available samples. Although both 
assumptions are unrealizable, it is possible to obtain a very close approximation to the original image 
in many cases. 
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Generalized 2-D Sampling and Reconstruction 
Sampling on a Lattice: A lattice in  is the set of all linear combinations of M linearly 
independent vector in . 

MΛ Mℜ
Mℜ

  Z: Integers },,,|{ 212211 Znnnvnvnvn MMM
M ∈+++=Λ LL

],,,[ 21 MvvvV L=  is called the sampling matrix and  is the reciprocal of the sampling 
density. Sampling matrix V is not unique for a given sampling grid, but  is unique. Sampled 
signal under these conditions is given by: 
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Spectrum of a Sampling on a Lattice:  
Reciprocal Lattice: The set of all vectors r such that  is an integer for all  is called the 
reciprocal lattice  A basis for   is the set of vectors such that  for all 

values of  or in a matrix notation: . This is normally explained in terms of 
unit cell or Voronoi cell, which are the set of points that are closer to the origin than to any other 
sample point. 
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In this scenario, the spectrum of the sampled signal is equal to an infinite sum of copies of the analog 
spectrum shifted according to the reciprocal lattice *Λ . 

∑ −=
k

cSampled kUFS
V

FS ).(.
|)det(|

1)(    

Equivalently:  
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where the periodicity matrix  satisfies   and are the 
periodicity vectors.  

],,,[ 21 MuuuU L= IVU T = Muuu ,,, 21 L
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• These expressions are also valid for rectangular sampling with V and U being diagonal 
matrices, and reduce to the case of rectangular sampling. 

Sampling operation does not result in loss of information if the analog signal spectrum Sc(F)=0 
outside the unit cell of  With these the generalized sampling problem can be stated as: .*MΛ

1. Given the spectral support Sc(F) of a bandlimited analog signal, select a lattice or 
equivalently a sampling matrix V; or  

MΛ

2. Given a sampling lattice design an anti-aliasing filter that confines the spectrum Sc(F) 
within a unit cell (Voronoi region) of   

MΛ
.*MΛ

 

 
Reconstruction from Samples on a Lattice: A continuous signal can be reconstructed from the 
samples on via ideal low-pass filtering over a unit cell of  MΛ .*MΛ
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Examples of lattices and their reciprocals: 

                 
Rectangular Lattice (spatial-domain) and its reciprocal (frequency-domain). 
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Hexagonal Lattice (spatial-domain) and its reciprocal (frequency-domain). 

Voronoi Cell and determining it by drawing equi-distant lines: 

           
 

Quantization 
Image amplitude values at each sample are quantized for a finite precision representation. Typically, 
we use 8 bits per pixel/per color (i.e., 24 bits per pixel for a color image) to represent images. Some 
applications, such as post-production editing of motion pictures, employ 10 bits/pixel/per color.  

Uniform Quantization and Coding: Consider a profile (per color intensity voltage level (R,G,B) 
presented to the digitizer) of an object in an image along a single scanning line.  
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Performance is measured in bit rate in bits/sample and the Signal-to-Distortion Ratio (SDR), 
commonly known as SNR.  
 
SNR for Uniform Quantizers:  If  
• Coding rate in bits per sample: R 
• Maximum amplitude level of pixels:   maxX

• Variance or power of input pixels:  2
Xσ
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    ⇒ dBRSNR 27.702.6 −=  

Non-Uniform Quantizers: 
• Step sizes are variable.  
• They are more closely spaced  for samples which are frequent. 
• Very infrequent samples are bundled together or even some neglected totally. 
• Step sizes are chosen either: 

• Logarithmically as in Log-PCM or  
• According to some optimization principle. Two classes: 

1. Lloyd II - Max quantizers. Optimized from empirical statistical assumptions, i.e., 
Gaussian, exponential, Gamma distribution for samples. 

2. Lloyd I quantizers: Designed by finding centroids of  the data at hand. 
 
Adaptive Quantizers: 
Uniform and non-uniform quantizers with fixed quantization levels can overflow and underflow 
easily if the input signal levels change over time. In other words, a large number of higher index 
levels are not used at all for low amplitude signals. In the case of signals with large amplitude ranges, 
the lower indices are never transmitted. The remedy to this situation is to adapt the quantizer levels to 
the dynamics of the input signal.  
 
Adaptation could be in two ways: 
1. Backward adaptation: Quantize the current signal; estimate the levels for the next iteration; 

quantize the new signal with the estimate from the previous iteration. 
2. Forward adaptation: Buffer the signal; estimate the levels and quantize with a small delay.  
 
 
Some of these ideas will be discussed within the framework of individual coding schemes. 
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