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Chapter 4 Two-Dimensional Signals and Transforms 
Two-D Signals: An analog image 
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denote spatial coordinates. The function 
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 may be scalar valued (gray scale images) or vector-valued (color images).
A discrete image 
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 is a 2-D sequence defined over the set of ordered pairs of integers 
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may be scalar or vector-valued.  Images always have finite support: 
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Basic Signals and Supports: 
2-D Impulse:   
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2-D Line-Impulse: 
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For line 1, similarly for other lines or columns. 

Exercise:   What is   
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2-D Unit-Step with Quarter Plane Support:   
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2-D Unit-Step with Half-Plane Support: 
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Wedge Support: A 2-D signal is said to have wedge support if it is nonzero only within two lines emanating from the origin. Both quarter-plane and half-plane support signals are special cases of wedge support signals.
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Exercise:   What is   
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Separable Signals:  A signal (function) is separable if  
[image: image16.wmf])
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Example: 2-D impulse is separable.  
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 is a 1-D Kronecker delta function.

Exercise:  Is 2-D unit step also separable?

Periodic Signals: A 2-D sequence 
[image: image19.wmf])
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Example: 2-D discrete complex exponentials
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are rectangularly periodic  with period 
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 are cycles/image. It is worth noting  that this is not the most general definition of periodicity in two dimensions. Other types of 2-D periodicity can also be represented by this definition but with larger values of 
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Symmetric Signals: There are multiple definitions of symmetry in 2-D.
Two-Fold Symmetry:  
[image: image32.wmf])
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Four-Fold Symmetry: 
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Circular Symmetry:  If  
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2-D Continuous and Discrete-Space Fourier Transforms

Fourier Transform of Analog Images: 

The Fourier transform and its inverse for a 2-D continuous signal is given by
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Properties of the 2-D FT

1) The Fourier transform is complex:  
[image: image38.wmf])
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2) Affine transformation: If 
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Special Cases:

a) Translation: 
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b) Rotation:  
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Fourier Transform of Discrete Images:
The Fourier transform of a discrete signal is a function of continuous frequency variables.
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[image: image48.wmf]2
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Note that 
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 are continuous 2-D frequency variables even though 
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 are discrete, as it was the case for discrete-time Fourier transform (DTFT) for 1-D signals.  
Properties of the 2-D FT: 
1.) The Fourier transform is complex: 
[image: image51.wmf])
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2.) Fourier transform is periodic in 
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3.) When 
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In this case, the value of 
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4.) Zero-Phase: A signal 
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, i.e, it is real. Strictly speaking, if the value of the Fourier transform is negative then it has a phase of 180o. In the spatial-domain, this implies  
[image: image64.wmf])

,

(

)

,

(

2

1

2

1

n

n

f

n

n

f

-

-

=

 provided 
[image: image65.wmf])

,

(

2

1

n

n

f

 is a real-valued image, which is known as 2-fold symmetry. 

5.) A stronger symmetry is the 4-fold symmetry as defined above by: 
[image: image66.wmf])

,

(

)

,

(

)

,

(

2

1

2

1

2

1

n

n

f

n

n

f

n

n

f

-

=

-

=

. 
In the frequency-domain, 4-fold symmetry implies:  
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Systems Response and Convolution: 

Impulse response of a system to a 2-D Unit-impulse signal is defined by:
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Signal decomposition conjecture: Any input signal can be constructed as an ensemble of 2-D unit impulses: 
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2-D Convolution Theorem: 

The output of an LTI systems is given by the 2-D convolution of the image with the system impulse response:
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Graphical Support for functions involved above:
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As in the 1-D case, the computation of convolution requires careful analysis and it is inefficient in most cases. Instead, fast convolution is used in computing the response of an LTI system through Fourier transforms in terms of frequency response.

Frequency Response: 

Let the input to an LSI system be a complex exponential: 
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. The frequency response is given by:
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Most practical systems and 2-D filters used in image processing are either separable or circularly symmetric.

Separable Filters:
A filter is called separable if its impulse response is separable. 
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Convolution with separable kernels results in significant computational savings.
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Implementation of 2-D convolution requires 
[image: image77.wmf]2
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multiplies and 
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adds per pixel. However, the implementation of the separable convolution requires M multiplies and M adds per pixel for each 1-D convolution, hence, a total of 2M multiplies and 2M additions.

Circularly Symmetric Filters:

A filter is said to have circularly symmetric impulse response if 
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It is worth noting that circular symmetry of 
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Example: Determine the impulse response of the filter whose frequency response is given by:
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The passband represents inside a circle of radius 
[image: image88.wmf]C

w

. The inverse 2-D Fourier transform of this has been worked out in many DSP books like: Lim, Two-Dimensional Signal and Image Processing, Prentice-Hall, 1990. (Chap. 1) or Oppenheim and Schafer, Discrete-Time Signal Processing, 2E, Prentice-Hall, 1999. (Chap. 2). The result is in terms of Bessel functions similar to those used in FM modulation:
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where the Bessel function first kind order 1 is given by:
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