#### **Chapter 3 Digital Video Fundamentals**

This portion of lecture notes are courtesy of Prof. A. Murat Tekalp of Koc University, Istanbul, Turkey, which should give us a brief review of digital video concepts, systems, and the standards. Some of these topics will be studied in detail during the semester.

#### **ANALOG VIDEO**

One or more analog signals that contain time-varying 2-D intensity (monochrome or color) and timing information to align the pictures.

Component Analog Video (CAV)
RGB
RGB

YCrCb (YUV or YIQ)

- Composite Video NTSC (National Television Standards Committee) PAL (Phase Alternating Line) SECAM (SEquential Color And Memory)
- S-Video (Y/C video)

#### NTSC / PAL / SECAM

#### Color Spaces for Analog Video

- Color is specified in terms of three primaries, commonly R, G, B.
- Not all R, G, B spaces are the same. They may have different primaries.
- R, G, B primaries themselves are specified in terms of X, Y, Z values.

| SMPTE C      | Colorimetry | Red   | Green | Blue  | White D65 |
|--------------|-------------|-------|-------|-------|-----------|
|              | x           | 0.630 | 0.310 | 0.155 | 0.3127    |
| (NTSC)       | у           | 0.340 | 0.595 | 0.070 | 0.3290    |
|              |             |       |       |       |           |
| EBU          | Colorimetry | Red   | Green | Blue  | White D65 |
|              |             |       |       |       |           |
| (DAL CECAND) | х           | 0.640 | 0.290 | 0.150 | 0.3127    |

• R, G, B values are converted to Y, U, V before transmission/storage using the following transformation.

| • PAL                         | NTSC                         |
|-------------------------------|------------------------------|
| Y = 0.299R + 0.587G + 0.114B  | Y = 0.299R + 0.587G + 0.114B |
| U = -0.147R - 0.289G + 0.436B | I = 0.596R - 0.274G - 0.322B |
| V = 0.615R - 0.515G - 0.100B  | Q = 0.211R - 0.523G + 0.311B |

#### **CRT Display: Gamma Correction**

- CIE luminance, chrominance vs. NTSC luma, chroma
- Physics of CRT: The intensity on the screen is proportional to the voltage input (video signal) raised to the power 2.5
- To maintain the correct tone scale, this nonlinearity of CRT must be compensated at acquisition by a 0.45 power law. R'=R0.45 G'=G0.45 B'=B0.45
- Perceptual uniformity

CRT voltage-intensity function is nearly the inverse of luminance-perceived luminance function.

• Noise sensitivity, SNR

Noise makes a larger contribution to small signal values



#### Scanning determines a mapping between spatial position and time.



- Progressive scan: Each frame is made up of lines.
- **Interlaced scan**: Each frame is split into two *fields*. This provides a tradeoff between temporal and vertical resolution.

#### **Temporal Rate and Flicker**

- Frame/field rate and flicker: Minimum refresh rate for flicker-free viewing is 50 Hz (temporal sampling).
- Field vs. frame rate:

Motion picture Progressive, 24x2=48 Hz TV (NTSC) Interlaced, 60 Hz TV (PAL/SECAM) Interlaced, 50 Hz Computer monitor Progressive, > 72 Hz

#### • Viewing conditions

Dim vs. bright environment

Viewing distance = (3400/Lines) x Picture Height one pixel subtends to one minute arc (1/60 of a degree)

# International Analog TV Standards

|                                       | Aspect<br>Ratio | Interlace | Frames/s | Total/Active<br>Lines | BW<br>(MHz) |
|---------------------------------------|-----------------|-----------|----------|-----------------------|-------------|
| NTSC<br>(USA,Japan,<br>Canada,Mexico) | 4:3             | 2:1       | 29.97    | 525/480               | 4.2         |
| PAL<br>(Great Britain)                | 4:3             | 2:1       | 25       | 625/580               | 5.5         |
| PAL<br>(Germany,<br>Austria, Italy)   | 4:3             | 2:1       | 25       | 625/580               | 5.0         |
| PAL<br>(China)                        | 4:3             | 2:1       | 25       | 625/580               | 6.0         |
| SECAM<br>(France,Russia)              | 4:3             | 2:1       | 25       | 625/580               | 6.0         |

Image aspect ratio = image width /image height

# Synchronization

Scanning at the display device must be synchronized with that at the source.



NTSC video signal for one full line.

- *Blanking pulses* are inserted during the retrace intervals to blank out retrace lines on the receiving CRT.
- *Sync pulses* are added on top of the blanking pulses to synchronize the receiver's horizontal and vertical sweep circuits.

# **Resolution and Bandwidth**

$$BW = \frac{1}{2} \frac{FR \times NL \times HR}{\rho}$$

FR = Frame Rate

- NL = Number of Lines/Frame
- HR = Horizontal Resolution
- $\rho$  = fraction of time allocated to active video signal per line
- Example: Video Bandwidth of the NTSC signal

 $\rho = 53.5 / 63.5 = 0.84$ BW = 4.2 MHz Line Rate = FR x NL = 29.97 x 525 = 15,734 HR =  $\frac{2 \times 4.2 \times 10^{6} \times 0.84}{15,734}$  = 448 pixels

# Spectral Content



• Spectrum of the scanned video signal for still images.



# Analog Video Recording

| Video     | Tape       | Number of | Luma      |
|-----------|------------|-----------|-----------|
| Format    | Format     | Lines     | Bandwidth |
| Composite | VHS, 8mm   | 240       | 3.0 MHz   |
|           | U-matic    | 330       | 4.0 MHz   |
| S-Video   | S-VHS, Hi8 | 400       | 5.0 MHz   |
| Component | Betacam SP | 480       | 4.5 MHz   |

# **DIGITAL VIDEO**

- Digital data communications (e.g., ftp, e-mail)
- and
- Digital audio (e.g., CD players, digital telephony)
- What is next?
  - Digital video as a form of computer data

Products such as: digital TV/HDTV, video/cell phone, multimedia PCs, are alpready in the marketplace.

• ``Digital video," IEEE Spectrum Magazine, pp. 24-30, Mar. 1992 to see what was predicted in 1992.

# Why Digital Video?

- Digital representation is robust: Error correction minimizes the effect of transmission/storage media distortion, noise and other degradations.
- Digital video requires lower bandwidth than analog video of equivalent subjective quality by using compression.
- Digital video enables integration of interactive networked multimedia, broadcast TV, and real-time communications in a unified system architecture.
- Digital video provides flexibility for signal processing for enhancement, standards conversion, composition, special effects, nonlinear editing, etc.

#### What is the Bottleneck?

Let's look at the raw data rates for digital audio and video:

- CD quality digital audio (mono)
- 44 kHz sampling rate x 16 bits/sample 700 kbps
- High definition video (from the GA-HDTV proposal)
- 1280 pels x 720 lines luma; 640 pels x 360 lines chroma x 60 frames/s x 8 bits/pel/channel 663.5 Mbps
- A picture is worth 1000 words!!
- A good source: Inglis and Luther, Video Engineering, McGraw Hill, pp. 160-178, 1996.

# Color Spaces for Digital Video

• ITU-R BT.601

Y-Cb-Cr are shifted and scaled versions of the analog Y-U-V components.

Y = 0.257R + 0.504G + 0.098B + 16Cb = -0.148R - 0.291G + 0.439B + 128

Cr = 0.439R - 0.368G - 0.071B + 128

where R, G, B are in the range (0-255).

 ITU-R BT.709 (HDTV monitors)

| Colorimetry | Red   | Green | Blue  | White D65 |
|-------------|-------|-------|-------|-----------|
| x           | 0.640 | 0.300 | 0.150 | 0.3127    |
| у           | 0.330 | 0.600 | 0.060 | 0.3290    |

Y = 0.2215R + 0.7154G + 0.0721B Cb = -0.1145R - 0.3855G + 0.5000BCr = 0.5016R - 0.4556G - 0.0459B

# Chrominance Formats for Digital Video



| Digital                    | Video     | Standa                          | rds  |             |
|----------------------------|-----------|---------------------------------|------|-------------|
|                            | ITU-R 709 | ITU-R 601<br>625/50<br>(525/60) | CIF  | <i>QCIF</i> |
| Number of active pels/line |           |                                 |      |             |
| Lum (Y)                    | 1920      | 720                             | 360  | 180         |
| Chroma (U,V)               | 960       | 360                             | 180  | 90          |
| Number of active lines     |           |                                 |      |             |
| Lum (Y)                    | 1080      | 576 (480)                       | 288  | 144         |
| Chroma (U,V)               | 1080      | 576 (480)                       | 144  | 72          |
| Interlace                  |           | 2:1                             | 1:1  | 1:1         |
| Pictures/sec               | 25 (30)   | 25 (30)                         | 30   | 5-15        |
| Aspect ratio               | 16:9      | 4:3                             | 4:3  | 4:3         |
| Raw data (Mbps)            | 884.7     | 165.9                           | 37.3 |             |

- Analog-to-Digital Conversion:
- The minimum sampling frequency is 4.2 x 2 = 8.4 MHz (Nyquist rate)
- Sampling rate should be an integral multiple of the line rate, so that samples in successive lines are aligned.
- To sample *component signals*, there should be a single rate for 525/30 and 625/50 systems; i.e., the sampling rate should be an integral multiple of both 29.97 x 525 = 15,734 and 25 x 625 = 15,625.
- To sample *the composite signal*, the sampling frequency must be an integral multiple of the subcarrier frequency.

This simplifies decoding (composite to RGB) of the sampled signal.



# Sampling Component Signals

|                      |                              | 525/59.94<br>SMPTE125M | 625/50   |
|----------------------|------------------------------|------------------------|----------|
| Luminance            | Sampling frequency           | 13.5 MHz               | 13.5 MHz |
|                      | Total/Active<br>Samples line | 858/720                | 864/720  |
|                      | Bitrate                      | 108 Mbps               | 108 Mbps |
| Chrominance<br>4:2:2 | Sampling frequency           | 6.75 MHz               | 6.75 MHz |
|                      | Total/Active<br>Samples line | 429/355                | 432/358  |
|                      | Bitrate                      | 54 Mbps                | 54 Mbps  |

Total bitrate= 216 Mbps; Active picture area = 165.9 Mbps

# Sampling the Composite Signal

|                                      | NTSC<br>3 fsc     | NTSC<br>SMPTE 244M | PAL<br>4 fsc      |
|--------------------------------------|-------------------|--------------------|-------------------|
| Bandwidth<br>(MHz)                   | 4.2               | 4.2                | 5.5               |
| Subcarrier/<br>Sampling<br>frequency | 3.58/10.74<br>MHz | 3.58/14.32<br>MHz  | 4.43/17.72<br>MHz |
| Total/Active<br>Samples lines        | 682/576           | 910/768            | 1134/939          |
| Bitrate<br>(Mbps)                    | 85.9              | 114.5              | 141.8             |

#### **Aspect Ratio:**

- Image aspect ratio (IAR) = image width / image height
- Pixel aspect ratio (PAR) = (IAR × No. of lines)/(No. of pels/line)
- Computer monitors (square pixels, PAR=1) IAR = (No. of pixels/line) / No. of lines
  - SDTV (rectangular pixels) NTSC: IAR = 4:3; PAR= (4/3 × 483) / 720 = 0.89
    - PAL: IAR = 4:3; PAR= (4/3 × 576) / 720 = 1.07
- HDTV, IAR = 16:9 = 1.777
- Motion pictures, IAR = 1:85:1 or 2.35:1

# CCD Video Cameras

- Three-sensor array cameras
- Single-sensor array cameras



Bayer pattern



# Image/Video Compression Standards

| ISO JPEG2000  | Still frame gray scale and color images         |
|---------------|-------------------------------------------------|
| ITU-T H.261   | Video for ISDN applications (px64 kbps)         |
| ITU-T H.263   | Video for PSTN applications (less than 64 kbps) |
| ISO MPEG-1    | Video for optical storage media (1.5 Mbps)      |
| ISO MPEG-2    | High quality generic video (4-20 Mbps)          |
| ISO MPEG-4    | Object-based video (10 kbps – 2 Mbps)           |
| ISO/ITU-T JVT |                                                 |

# Proprietary File Formats

| Quicktime                       | Apple Computer    |
|---------------------------------|-------------------|
| AVI (Audio/Video Interleaved)   | Microsoft         |
| Video for Windows               |                   |
| ASF (Advanced Streaming Format) |                   |
| Real Video                      | Real Networks     |
|                                 |                   |
|                                 |                   |
| PhotoCD                         | Eastman Kodak Co. |
|                                 |                   |
| SVGA Computer Monitors          |                   |

# **APPLICATIONS OF DIGITAL VIDEO:**

- Consumer Electronics: VideoCD, DVD
- @ 1.5 Mbits/s CD-ROM or harddisk storage
- Digital TV (Broadcast, Cable, or Satellite) HDTV @ 20 Mbits/s over 6 MHz channels SDTV @ 4-6 Mbits/s
- Video telephony
  - ISDN @ 384 kbits/s using p x 64 kbits/s
  - PSTN @ up to 56 kbits/s using the copper network

1024 pixels  $\times$  720 lines @72fps

- Wireless @ 10 kbits/s using GSM
- Video over IP: Internet and wireless
  - bitrate depends on the connection speed
- Other

Surveillance Imaging (military/ law enforcement), Intelligent V. Highway Systems Telemedicine, Telepresence, Distance Learning

# Digital Strorage / Consumer Electronics:

- VideoCD (MPEG-1) vs. DVD (MPEG-2)
- CD-ROM holds 650 Mbytes

• DVD

Single-sided, single-layer ~4.7 Gbytes Single-sided, dual-layer ~8.5 Gbytes (133 minutes of MPEG-2 compressed movie at 8 Mbps) Double-sided, single-layer ~9.4 Gbytes Double-sided, dual-layer ~17 Gbytes

# Digital TV: ATSC Standard:

- 18 video formats includes SDTV and HDTV
- Colorimetry: 4:2:0 chrominance sampling; 16:9 aspect ratio
- MPEG-2 video compression and transport (188 byte packets)
- 8-VSB for terrestrial and 16-VSB for high data rate cable transmission
- Digital HDTV requires about 884:20 = 44:1 compression

# ATSC Video Formats

| No. of Lines | No. of Pixels | Aspect Ratio | Picture Rate    |
|--------------|---------------|--------------|-----------------|
| 1080         | 1920          | 16:9         | 60I 30P 24P     |
| 720          | 1280          | 16:9         | 60P 30P 24P     |
| 480          | 704           | 16:9 4:3     | 60I 60P 30P 24P |
| 480          | 640           | 4:3          | 60I 60P 30P 24P |

# DVB:

 Europe developed a variation of the ATSC standard known as Digital Video Broadcast (DVB) based on MPEG-2 video compression. DVB does not support HDTV mode.

# **Real-Time Communications**

- · Videoconferencing/phone over ISDN: up to 2 Mbps using H.261 or H.263
- Videophone over PSTN: 8 32 kbps using H.263 or H.263+
- Videoconferencing/phone over LAN/Internet: Heterogeneous networks

| Compression Requirements to Reach 10 kbps |                        |                  |                   |  |
|-------------------------------------------|------------------------|------------------|-------------------|--|
| Frames/s                                  | ITU-R 601<br>720 x 576 | CIF<br>352 x 288 | QCIF<br>176 x 144 |  |
| 7.5                                       | 4979:1                 | 915:1            | 229:1             |  |
| 10                                        | 6637:1                 | 1216:1           | 304:1             |  |
| 15                                        | 9952:1                 | 1824:1           | 456:1             |  |
| 30                                        | 19904:1                | 3648:1           | 912:1             |  |

# Transmission / Access Networks

| Analog Telephone Modem | 28.8 – 56 kbps                  |
|------------------------|---------------------------------|
| ISDN                   | 128 kbps – 2 Mbps (p x 64 kbps) |
| T-1                    | 1.5 Mbps                        |
| DSL                    | 1.5 – 6 Mbps (downstream)       |
| Cable Modem            | 30 Mbps (downstream)            |
|                        | shared by multiple users        |
| Ethernet (LAN)         | 10-100 Mbps                     |
|                        | shared by multiple users        |
| Fiber Backbone         | 55 Mbps – 1 Gbps                |
| (B-ISDN/ATM)           |                                 |
| GSM                    | 10 kbps                         |
| GPRS                   | 30-40 kbps                      |
| CDMAOne                | 80 kbps                         |
| UMTS                   | 384 kbps                        |

#### Convergence of Video/Voice/Data Applications:

Network infrastructures

Telephone networks (PSTN, ISDN, ADSL) CableTV networks (Cable Modem) Internet (network of networks) (TCP/IP) Digital wireless (Mobile)

• Services:

Real-time two-way communications, video phone and conferencing Digital TV, interactive TV Interactive multimedia over the internet, Web-based services

#### Video over IP: Internet and Wireless:

- Standards-Based vs. Proprietary
- Compression Issues Error resilience Scalability

Buffer Control

- Protocol Issues TCP/IP RTP
- Packetization Issues

# What Information is Present in Digital Video?

# Challenges in Digital Video Processing:

Exploit temporal redundancy by motion analysis

- Motion Analysis
  - 2-D motion/optical-flow estimation and segmentation
  - 3-D motion, structure estimation and segmentation
  - Object tracking, occlusion, deformations
- Filtering and Standards Conversion
  - Deblurring, noise filtering, edge sharpening
  - Frame rate conversion and deinterlacing, resolution enhancement
- Compression

JPEG, H.261/H.263, MPEG 1-2-4 Subband/wavelet and content-based coding

# Convergence of Digital Video, Computer Vision and Graphics:

- DSP
- Transforms DFT, DCT, JPEG/MPEG compression
- Linear and nonlinear filtering, restoration
- Computer Vision
  - Video object segmentation and tracking 3D motion modeling - Structure from motion
  - Computer Graphics
    - Animation, texture mapping.