MPEG-4 Video Decoder:

Coding of Intra VOPs: Improved adaptive intra macro-block coding as compared to MPEG-1/2

H.263 vs MPEG Quantization:

1.H.263 Quantization

– Intra DC: LEVEL = COF// dc_scaler

dc_scaler uses two Qp dependent tables one for Luminance other for Chrominance

- Intra AC Forward Quant: LEVEL = |COF|/(2xQp); clip to [-127:127] - Inter Forward Quant: LEVEL = (|COF|-Qp/2)/(2xQp); clip to [-127:127]

2.MPEG Quantization

- Intra DC: $LEVEL = COF//dc_scaler$

dc_scaler uses two Qp dependent tables one for Luminance other for Chrominance

- Intra AC Forward Quant: $ac \sim [i][j] = (16*ac[i][j])/WI[i][j];$ clip to [-2048, 2047]

 $LEVEL = (ac \sim [i][j] + sign(ac \sim [i][j])*((a*Qp)//b))/(2*Qp);$ clip to [-127:127]

- Inter Forward Quant: $ac \sim [i][j] = (16*ac[i][j])/WN[i][j]$; clip to [-2048, 2047] $LEVEL = ac \sim [i][j]/(2*Qp)$; clip to [-127:127]

DCT Coefficient Quantization and Scanning:

Two methods:

- Method 1 uses quantizer of H.263.
- Method 2 uses quantizer of MPEG-1/2.

Intra uses:

- (i) Nonlinear quantizer for DC coefficients.
- (ii) Quantizer matrix (MPEG-1/2) as well as partial quantizer matrix loading.
- (iii)Quantization of DCT coefficients adaptively scanned; 1 new scan compared to MPEG-2.

Alternate-Horizontal scan								Alternate-Vertical scan									Zig-zag scan								
0	1	2	3	10	11	12	13		0	4	6	20	22	36	38	52		0	1	5	6	14	15	27	28
4	5	8	9	17	16	15	14		1	5	7	21	23	37	39	53		2	4	7	13	16	26	29	42
6	7	19	18	26	27	28	29		2	8	19	24	34	40	50	54		3	8	12	17	25	30	41	43
20	21	24	25	30	31	32	33		3	9	18	25	35	41	51	55		9	11	18	24	31	40	44	53
22	23	34	35	42	43	44	45		10	17	26	30	42	46	56	60		10	19	23	32	39	45	52	54
36	37	40	41	46	47	48	49		11	16	27	31	43	47	57	61		20	22	33	38	46	51	55	60
38	39	50	51	56	57	58	59		12	15	28	32	44	48	58	62		21	34	37	47	50	56	59	61
52	53	54	55	60	61	62	63		13	14	29	33	45	49	59	63		35	36	48	49	57	58	62	63

Predictive Motion Vector Coding:

-If one or more of MV1, MV2, and MV3 is outside the picture border or the current video packet, then it is classified as *invalid*.

- 1) If only one MV is invalid, it is set to 0
- 2) If two MVs are invalid, they are set to the third MV
- 3) If all three MVs are invalid, they are all set to 0.

Global Motion Compensation Example:

Frame 6

Affine:
$$(a_1, a_2, a_3, a_4, a_5, a_6)$$

 $x' = a_1 + a_3x + a_4y$
 $y' = a_2 + a_5x + a_6y$
 $a_1 = 77.06, a_3 = 1.046, a_4 = -0.104$
 $a_2 = 9.38, a_5 = -2e-4, a_6 = 0.98$

Reduced Resolution Coding:

- Encodes the I and P-VOP in reduced spatial resolution or normal resolution(normal VM scheme) adaptively.
- **Resolution Decision**: The decided resolution is signaled to decoder through the "vop_reduced_resolution" flag in VOP header. If the reduced resolution is selected, the VOP is encoded as the following:
 - o **Motion Estimation**: Motion estimation is done in 32 x 32 macroblocks with expanded search area and with restricted search positions in half pel search.
 - O Motion Compensation: Motion compensation is done in 32 x 32 macroblocks, and the prediction error is generated in each 32 x 32 macroblock.
 - o **Scaling down of the Motion Vectors**: The scaled down motion vectors are encoded as described in the VM.
 - O Down Sampling of the Prediction Error: The prediction error is down-sampled to the half resolution. After the down sampling, the size of macroblock is 16x16 and the size of block is 8x8.
 - o **Texture Coding of the Prediction Error**: The down sampled prediction error is encoded exactly same as described in the current VM(DCT, Q, VLC)

Interlaced Video Coding: Allows interlaced I-, P-, B- VOP coding

- MC for field or frame pictures similar to MPEG-2
- Modified AC/DC prediction
- Frame/Field DCT similar to MPEG-2
- Modified rules for scanning of coefficients

VOP Coding Types:

- VOP coding involves shape, motion and texture coding
- I, P, and B VOPs similar to I, P and B pictures
- I-VOPs have only intra macroblocks; optimized coding of intra
- P or B VOPs has inter or intra macroblocks; improved MC tools allow optimized coding
- B-VOPs further optimized by adding a "direct" prediction mode

Shape Coding:

- 1. Binary Shape coding
 - Lossless coding (JBIG-like context-based arithmetic coding)
 - Lossy coding
 - Possible feathering around borders in the binary mode
- 2. Gray-level Shape Coding

Motion Compensation of VOPs:

- 16x16 block MC same as in MPEG-1/2
- Half or Quarter pel motion compensation
- Global MC using 8 motion parameters wrt the previous VOP

