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5. Coded Modulation Schemes 

Why using error correction coding for modulation? 
As discussed before, modulated signals using M-ary signaling perform at best 9.0 dB lower than 
the achievable channel capacity of the physical channel. The way to close that gap is to resort to 
channel coding using elaborate signal sequences lying in higher-dimensional spaces, but 
composed from elementary modulator sets, such as M-ary QAM or M-ary PSK schemes.  

Coding gain: For a given bit-error probability, the reduction in the Eb/N0 that can be realized 
through the use of code:  

  
Issues to consider: 

• Error performance vs. bandwidth 
• Power vs. bandwidth 
• Data rate vs. bandwidth 
• Capacity vs. bandwidth  

 

 
 
 
 
 
 
 
The process of channel coding produces modulator input symbols that are interrelated in either a 
block-by-block or sliding-window fashion, introducing a memory and redundancy into the 
signaling process. The costs involved are:  
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(1) increased rate (bandwidth) requirement and  
(2) exponentially increasing computational (realization) complexity.  

Two valid questions: 
1. What is the underlying thought behind coding? 
2. Why bother with complexity? 
 
The answers to both point to the real promise of Shannon’s information theory for reliable 
communication in noisy channels (1) at rates approaching the channel capacity and (2) to do it in 
an instrumentable way. Codes install two key features in message sequence blocks:  
• Redundancy and  
• Memory.  
 
Redundancy: The set of allowable code sequences or codewords is often many orders smaller 
than the number of sequences suggested by the size of the code alphabet. Thus, the code symbols 
do not carry as much information per symbol as they might without coding as in the case of 
“parity check codes.”  
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Example 5.1: Recall the transmission of triple-bits over a BSC with a majority rule decoder 
studied in Chapter 1. The corresponding code pair was: {000,111}. The length of this code is 

 and the code dimension is defined as 3=n ||log2 Ck =  will be 2=k  in this case. The rate of 
the code is defined by: 

 
n
kRRate ==   symbolbitsR /3/1=⇒    

Example 5.2: Simple 3-bit Error Detecting Code Space: 

 
Memory: The redundancy gained by adding bits can accomplish very little unless the code 
symbols depend on many input symbols, which is ascribed as memory. Equivalently, information 
in a sequence of messages is diffused throughout a block of bits called a codeword. 

 
5.1 Definitions and Classes of Codes1

Coding techniques may be classified based on the structure behind the encoding function:  
• Block Codes  
• Sliding-Block Codes (Trellis Coding.) 

Block Codes: They operate in block-by-block fashion and each codeword depends only on the 
current input message block. They can be further categorized as Linear and Non-linear codes. 

                                                           
1 The key reference in preparing some parts of this chapter has been (1) John Proakis’s book: Digital Communications, 
4th Edition, (2) Simon Haykin’s book: Communication Systems, 4th Edition, and (3) Bernard Sklar’s book: 
DigitalCommunications, 2nd Edition. A number of tables and figures have been included with permission. 
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Example 5.3: Consider the following six codes: 

 
Fixed-length Code: A code with a fixed code length. (code: 1-2 are fixed length).  
Variable-length Code: Code length is not fixed. (code: 3-6). 
Distinct Code: A code is distinct if each codeword is distinguishable form other codewords. All 
codes above except code are distinguishable. 
Prefix-Code: Code in which no codeword can be formed by adding code symbols to another 
codeword. 
Uniquely decodable Code: A code is uniquely decodable if the original message can be 
reconstructed perfectly from the encoded binary sequence.  

A sufficient condition to ensure that a code is uniquely decodable is that no codeword is a 
prefix to another codeword. 

Instantaneous Codes: A uniquely decodable code is an instantaneous code if the end of any 
codeword is recognizable without examining the subsequent code symbols. All prefix codes are 
instantaneous codes.  
Optimal Codes: A code is optimal if it is instantaneous and has minimum average length for a 
given source with a given probability distribution for the source alphabet. 

L

Code Efficiency :η  It is a measure of how close a particular code L is to the theoretically 
achievable, i.e., entropy   .H

L
XH )(

=η  

Code Redundancy :γ   
ηγ −= 1  

Kraft Inequality: Let X be a source with alphabet }.,,2,1;{ mixi L=  Assume that the length of 
the binary codeword corresponding to a particular message  is  A necessary and sufficient 
condition for the existence of an instantaneous (prefix) binary code is bound by Kraft Inequality: 
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Example 5.4: Consider a signal set with letters: }4,,1;{ L=ixi  and four possible coding schemes. 
Xi Code A Code B Code C Code D 
X1 00 0 0     0 
X2 01 10 11 100 
X3 10 11  100 110 
X4 11   110  110 111 

(a) All codes except B satisfy Kraft’s inequality: Since they are all 2-bits long, we have 
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(b) Codes A and D are uniquely decodable. These two codes are prefix codes and hence 
uniquely decodable. Since code B does NOT satisfy Kraft’s inequality it is NOT. C has 
problems consider the bit stream: 

0110110  ⇒  two possible symbol sequences:  OR   4321 xxxx 441 xxx

Linear Codes: Linear codes are defined by a linear mapping over an appropriate algebraic 
system, such as Galois Fields, from the space of input messages to the space of output messages. 
This algebraic structure could allow significant simplification of encoding and decoding 
equipment. In other words, if linear combinations of two codewords are also legitimate codes then 
they are called linear codes. They are also known as the "Parity Check Codes."  
Distance of a code: The number of elements in which two codewords differ. 

∑
=

−⊕=
N

l
qModulojlCilCjCiCd

1
)(),(       (5.1) 

Here q represents the number of elements in the code. For q=2 we have binary case and this is 

called the Hamming distance. The minimum distance , or equivalently, mind freedmin  is the 
smallest distance for the given code set: 
         (5.2a) )},({min ji CCdMind =

Error Detection Capability: The number of bits can be detected is given by: 
1min −= de           (5.2b) 

Error correcting-capability t of a code, which is defined as the maximum number of guaranteed 
correctable errors per codeword, is 

 ⎥⎦
⎥

⎢⎣
⎢ −

=
2

1mindt                                                                                                              (5.2c) 

The number of non-zero elements in a codeword gives weight of a code. For a binary code, the 
weight is basically the number of "1"s and is given by: 

∑
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Example 5.5: Shannon-Fano Coding Algorithm: 
 (i) List source symbols in the order of decreasing probability. 
(ii) Partition the set into two sets that are as close to equiprobable as possible and assign 
“0” to the upper set and “1” to the lower set. 
(iii) Continue partitioning until no further subdivision is possible. 
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Example 5.6: Huffman Coding Algorithm: 

(i) List source symbols in the order of decreasing probability. 
(ii) Combine two symbols with lowest probability and re-order the resultant probabilities 
(reduction step 1). Assign “0” to the upper set and “1” to the lower set. 
(iii) Continue combining until no further subdivision is possible. 
(iv) Assume a tie-breaker rule for equiprobable cases. Lower index “1”, upper “0” vice 
versa. 

Consider the following six source symbols to be used as alphabet:  
S={A,B,C,D,E,F} with occurrence probabilities {0.25, 0.20, 0.16, 0.15, 0.13, 0.11}. Note that sum 
of probabilities is 1.0 as it should be.  
One way to represent this symbol set is to assign bitL −= 3 long codewords to each symbol, which 
might be rather away from the source entropy H(S).  

            (1.25) symbolbitppSH
k

kk /5309.2)(log.)(
6

1
2 =∑−=

=

It is easy to see that the difference symbolbitsSHL /4691.05309.20.3)( =−=−   

This is almost ½ bits per symbol away from the theoretical bound H(S).  Let us now construct a 
Huffman code for this set. 

Symbol Pk
A

B

C

D

E

F

0.25

0.20

01.6

0.15

0.13

0.11

Huffman
Code
10

00

111

110

011

010

Code
Length

2

2

3

3

3

3

0

0

0

0

0
1

1

1

1
1

0.31

0.24

0.44

0.56

1.0

Binary
Code
000

001

010

011

100

101

Code
Length

3

3

3

3

3

3

 
Huffman Coding example. 

The average length of this code is: 

 symbolbitsxxxxxxLHuffman /55.2311.0313.0315.0316.0220.0225.0 =+++++=  
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The difference in this case is lowered to:  

 symbolbitsSHL /0191.05309.255.2)( =−=− , 

which is almost perfect. 

A systematic code is one in which the parity bits are appended to the end of information bits. For 
an (n,k)-code, the first k bits are identical to the message information, and the remaining n-k bits of 
each codeword are linear combinations of the k information bits. 
Cyclic Codes exhibit a cyclic property and they are practically important subclass of linear codes. 
If  is a cyclic code, and then  is also a codeword. Due 
to this cyclic property, these codes possess a considerable amount of structure, which make the 
encoding and decoding procedures simple.  

],...,,[ 021 cccC nn −−= ],,...,,[ 1032 −−− nnn cccc

Non-linear codes, although not particularly important in the context of block coding, are the 
remaining codes. 
Trellis Coders, in contrast, can be viewed as mapping an arbitrarily long input message to an 
arbitrarily long code stream without block structure. The output symbols at a particular time 
depends on the state of a finite-state machine, as well as on current inputs. The structure is a 
regular finite-state graph like a garden trellis. The nodes of the trellis are the labels of the state 
labels, which are, in turn, specified by a short block of previous inputs and the name sliding-block 
code is very frequently used.  
Linear Trellis Codes are known as Convolutional Codes, because the code sequence can be 
viewed as the discrete-time convolution of the message sequence with the impulse response of the 
encoder. In practice, most trellis codes have thus far been the choice of design in the area of ML 
detection based digital communication systems.  
Non-Linear Trellis Codes are also known as Coset Codes since they form standard arrays of 
rows (cosets) in a number of Hard-Decision Decoding schemes, which are non-linear detection 
techniques. 
 
Galois Fields: Coding techniques make use of the mathematical constructs known as finite fields. 
The most common field employed in coding theory is Galois Fields  and its extensions 

, where m is an integer. Let 
)2(GF

)2( mGF F  be a finite set of elements on which two binary operations 
--addition and multiplication—are defined. This set is a field, in addition to two binary operations, 
if the following conditions are satisfied: 
1. F is a commutative group under addition. The identity element with respect to addition is 

called the zero element. 
2. The set of non-zero elements in F is a commutative group under multiplication. The identity 

element with respect to multiplication is called the unit element. 
3. Multiplication is distributive over addition: cabacba ..).( +=+   
4. The additive inverse of an element is a a− is the element, which forces the sum to 0. 
5. The multiplicative inverse of is  and it satisfies:  a 1−a 1. 1 =−aa
 
Properties of fields: 
• Property I:   aa .000. ==
• Property II: 0.00 ≠≠≠ bathenbandaIf  
• Property III: 000. =≠= bimplyaandba  
• Property IV: ).().().( bababa −=−=−  
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Example 5.7: Let us display the addition and multiplication tables for GF(2) and GF(5): 

    
Note 1: In binary arithmetic, modulo-2 operations are used and since 11011 −==+ implies , the 
subtraction is equivalent to addition. So, no need to design subtractors in realizations. 
Note 2: Reed-Solomon codes to be discussed later make use of non-binary field and m>1. In 
addition to 1,0, elements represented by are used to form: jα
      (5.4) ,...},...,,,,0{,...},...,,,1,0{ 2102 jjF ααααααα ==
• In order this field to contain element and is a closed set under multiplication we must add 

the following condition called the principle of irreducible polynomial: 
m2

0)12( 1 αα ==−m

        (5.5) 
The sequence of elements  thus becomes the following sequence : F ∗F

,...},,,...,,,0{,...},,,...,,1,0{ 0221021222 ααααααααα −−−∗ ==
mmmm

F      (5.6) 
Note 3: Each of the  elements in Galois Field can be represented by a polynomial of degree m-
1 or less. At least one of the m coefficients is non-zero and they can be denoted by: 

m2

      (5.7) 1
1,

2
210 ......)( −

−++++== m
miiiii

i xaxaxaaxaα
Note 4: Addition of two elements of the field is defined as the modulo-2 addition of each of the 
polynomial coefficients of like powers: 

1
111100 ).(...).()( −
−− ++++++=+ m

jmimjiji
ji xaaxaaaaαα      (5.8) 

These two equations can be used to obtain elements in a Reed-Solomon code. 
 

5.2 Linear Block Codes and Examples 
A linear block code (n,k) has first n-k bits as parity bits and the last k bits as the message bits as 
shown below. 

],,,|,,,[ 110110 −−− kkn mmmbbb LL  
 

                                             
                                                        Parity Bits        Message Bits 

Systematic block code (n,k):  First (or last) k elements in the codeword are information bits. 

The codewords are given by: 

       (5.9) 
⎩
⎨
⎧

−+−−=
−−=

=
−+ 1,...,1,

1,...,1,0
nknknim

knib
c

nki

i

The (n-k) parity bits are linear sums of the k message bits: 
        (5.10) 1,11100 ...... −−+++= kikiii mpmpmpb
where the coefficients are defined by: 

         (5.11) 
⎩
⎨
⎧

=
otherwise
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• These equations are usually written in a compact matrix form: 
 ],...,,[ 110 −= kmmmm          (5.12a) 
 Pmbbbb kn .],...,,[ 110 == −−         (5.12b) 
where: 

 
⎥
⎥
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⎥

⎦

⎤

⎢
⎢
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⎣

⎡

=

−−−−−

−−

−−

1,11,10,1

1,11110

1,00100

knkkk

kn

kn

ppp

ppp
ppp

P

L

MMMM

L

L

       (5.12c) 

 ],...,,[ 110 −= ncccc          (5.12d) 
The code is written by: 
 ].[][ kIPmmbc MM ==          (5.13) 
where kI is the k-by-k identity matrix. Let us define the k-by-n generator matrix: 

 ][ kIPG M=           (5.14) 
Using this generator matrix the code in (5.13) can be simplified to: 
 Gmc .=           (5.15) 

Let H  denote an (n-k)-by-n parity-check matrix: 
  ][ T

kn PIH M−=         (5.16) 
We may perform the following multiplication of matrices: 

  TTT

k

T

T
kn

T HGPP
I

P
PIGH .0][ ==+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= − LM     (5.17) 

Where 0  is a (n-k)-by-k null matrix with zero elements. Post multiplying both sides of (5.16) by 
the transpose of this parity-check matrix we get: 
  0... == TT HGmHc         (5.18) 
This last property is used in the decoding operation at the receiver. 

Syndrome Decoding: Given c  be the vector transmitter sends over a noisy channel and the 
received corrupted vector be r : 
  ecr +=          (5.19) 
where e is the error vector of size 1-by-n, whose elements are defined by: 

      (5.20) 
⎩
⎨
⎧

=
otherwise

locationiinoccurredhaserroranif
e

th

i 0
1

Syndrome is defined by: 

  THrs =          (5.21) 
The following two properties make syndrome essential in decoding codes operating in noisy 
environments. 
Property 1: The syndrome depends only on the error pattern, not on the transmitted codeword. 

TTTT HeHeHcHecs ...).( =+=+=       (5.22) 
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Property 2: All error patterns that differ by a codeword have the same syndrome.  
For k message bits there are  distinct codewords. Correspondingly, for any error pattern k2 e , we 
define vectors: 
  12,...,1,0, −=+= k

ii iece        (5.23) 
as coset vectors of the code. In other words, a coset has exactly  elements that differ at most by 
a code vector and an (n,k) linear block code has  possible cosets. Let us multiply both sides of 
(5.23) by the transpose of the parity-check matrix: 

k2
kn−2

  TT
i

TT
i HeHcHeHe .... =+=       (5.24) 

which is independent of the index i. These two properties show that the syndrome contains 
information about the error pattern and may therefore be used for error detection, where 

elements of the syndrome )( kn − s  are a linear combinations of n elements of the error pattern 
as illustrated below: ,e

0,112021010000 .... −−+−+−− +++++= knknknkn pepepepees L  

1,112121110111 .... −−+−+−− +++++= knknknkn pepepepees L  
M  

1,111,221,111,011 .... −−−−−−+−−−+−−−−−−−− +++++= knknknknknknknknknkn pepepepees L  
 
Syndrome decoding algorithm: 
Preliminary Step 1:  code vectors are placed in a row with the all-zero code vector k2 1c  as the 

left-most element. 
Preliminary Step 2: An error pattern 2e is picked and placed under 1c , and a second row is formed 

by adding 2e  to each of the remaining codewords in the first row. 
Preliminary step 3: Step 2 is repeated until all the possible error patterns have accounted for. 

 
For a given channel, the probability of decoding error is minimized when the most likely error 
patterns are chosen as the coset leaders. For BSC, this corresponds to forming the above standard 
array with each coset leader having the minimum Hamming weight in its coset.  
Regular steps of the decoding procedure: 
Step 1: For the received vector r , compute the syndrome: THrs =  
Step 2: Within the coset characterized by this syndrome, identify the coset leader by choosing the 

error pattern with the largest probability of occurrence; call it 0e . 
Step 3: Compute the code vector: 0erc +=  as the decoded version of the received vector. 
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Example 5.8: (From Haykin Chapter 10) Hamming Codes: Consider a family of (n,k) codes that 
have the following parameters: 
 Block length:    12 −= mn
 Number of message bits:  12 −−= mk m

 Number of parity bits:  mkn =−  
Where . These codes are commonly known as the Hamming codes. Consider the specific 
example of (7,4) code, where the coding rate is 4/7. An appropriate generator matrix and the 
corresponding parity-check matrix for this code for this code are given by: 

3≥m

   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000|101
0100|111
0010|110
0001|011

G
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1110|100
0111|010
1101|001

H

 
 
                          P                    Ik                                     In-k                PT

 
Next we will tabulate 16 distinct messages together with the weight of the code for k=4. For a 
given, message, the corresponding codeword is found by using the generator matrix of  (5.15), 
which are normally tabulated together with the Hamming weights of individual codewords. It is 
clear from this table that the minimum Hamming distance is 3.  

  
 
Hamming codes have a property that we can correct up to t errors if and only if, 
          (5.25) ⎣ )1(5.0 min −≤ dt ⎦
In this case, we can correct single-error patterns. In other words Hamming (7,4) codes are single-
error correcting binary perfect codes. If we assume that we have single-error patterns, we can 
formulate the seven coset leaders as listed in the second column of the second table above. As 
expected zero syndrome corresponds to no errors. 

For instance, [1110010] is sent and the received vector is [1100010] has an error in location 3. 
Using (5.22), the syndrome is calculated as: 
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  ]001[

101
111
110
011
100
010
001

].1100010[ =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=s

From this last table, we find that the corresponding coset leader (error pattern with the highest 
probability of error) is found to be [0010000]. Thus, adding this error pattern to the received 
vector produces the correct vector actually sent. 

5.3 Cyclic Codes and Examples 
Due to their well-defined structure, these codes have very efficient decoding schemes. Encoding 
and syndrome calculation are easily performed using feedback shift-registers. Hence, relatively 
long block codes can be implemented with a reasonable complexity. Finally, two of the most 
prominent block codes: BCH and Reed-Solomon codes are cyclic codes.  

Let  the n-tuple  denote a code word of an (n,k) linear block code. Let g(X) be a 
polynomial of degree n-k that is a factor of 

),...,,( 110 −nccc
1+nX , which can be expanded:    

         (5.26) kn
kn

i

i
i XXgXg −

−−

=

++= ∑
1

1
.1)(

where each coefficient  is 1 or 0. This polynomial has two terms with coefficient 1 separated by 
n-k-1 terms. Therefore, it is called the generator polynomial of a cyclic code, where each 
codeword can be expressed as a polynomial product: 

ig

          (5.27) )().()( XgXaXc =
where a(X) is a polynomial with degree k-1. 

Suppose we are given a generator polynomial g(X) and we would like to encode the message 
sequence  into an (n,k) systematic cyclic code let us form the structure for the 
code with (n-k)-parity bits in front:  followed by the message bits .  

),...,,( 110 −kmmm
),...,,( 110 −−knbbb ),...,,( 110 −kmmm

1. Let the message polynomial be defined as: 
1

110 .....)( −
−+++= k

k XmXmmXm       (5.28) 
2. Multiply . )(. XmX kn−

3. Divide the result in step 2 by the generator polynomial to obtain the remainder . )(Xb

)(
)()()(/)(.

Xg
XbXaXgXmX kn +=−       (5.29) 

4. Add this remainder polynomial to step 2 to obtain the code polynomial: 
)(.)()( XmXXbXc kn−+=        (5.30) 

Parity-Check Polynomial: A cyclic code is also uniquely defined by its parity-check polynomial: 
k

k

i

i
i XXhXh ++= ∑

−

=

1

1
.1)(        (5.31) 

where coefficients  are either 0 or 1. ih
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Property: g(X) and h(X) are factors of the polynomial: 1+nX . 
1)().( += nXXhXg         (5.32) 

This property provides the basis for selecting the generator polynomial or the parity-check 
polynomial of a cyclic code. 

(n-k)-by-n Parity-Check Matrix: H  is formed from rows of n-tuples pertaining to the (n-k) 
polynomials: . Even though, it seems confusing now, it 
is actually a simple process, as it will be demonstrated with an example later. 

)}(.),...,(.),(.{ 11111 −−−+− XhXXhXXhX nkk

• Encoder given below implements the above steps in terms of flip-flops as unit-delay elements, 
modulo-2 adders, branch weights, a gate and a switch. 1. Gate is ON to permit k-message bits to 
be shifted into FF. Right after, (n-k)-bits in SR form the parity-bits, which are the same as the 
coefficients of b(X), 2.Gate is OFF to break the feedback connections. 3. Contents of the shift 
registers are pumped out to the channel.  

 
Encoder for an (n,k) cyclic Code. 

• Syndrome Computation: Recall that the first step in the decoding of a block code is the 
computation of a syndrome for the received codeword. If the syndrome is zero, there are no 
transmission errors. Otherwise, this information can be used to correct the errors. 
Let the received word be represented with a polynomial of degree n-1 or less: 

)()().(.....)( 1
110 XsXgXqXrXrrxr n

n +=++= −
−                    (5.33) 

where s(X) is the remainder polynomial of degree n-k-1 or less, which is defined as the syndrome 
polynomial and its coefficients make up the (n-k)-by-1 syndrome s . The structure of this set-up is 
identical to the encoder structure above, except for the fact that the received bits are fed into the 
(n-k) stages of the feedback SR from the left as shown below. As soon as all the received bits have 
been shifted into the SR, its contents define the syndrome. 

1−−kng
2g1g

 
Syndrome Calculator for (n,k) cyclic Code. 
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Example 5.9: Let us revisit the (7,4) block code above.  

1. Let us form the 4-by-7 generator matrix from g(X): 
   31)( XXXg ++=

         42)(. XXXXgX ++=

      5322 )(. XXXXgX ++=

     6433 )(. XXXXgX ++=
If we use the coefficients of the terms above in a matrix form we obtain a generator matrix: 

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000101
0100111
0010110
0001011

1011000
0101100
0010110
0001011

GGo  

As it is clear from the first form the generator matrix is not systematic. However, it can be made 
so by adding the sum of the first two rows to the last row to have the generator matrix identical to 
the result above. 

2. Let us now generate 3-by-7 parity-check matrix from the parity-check polynomial h(X): 
43214 1)(. XXXXhX +++=−  

54315 )(. XXXXXhX +++=−  
654216 )(. XXXXXhX +++=−  

Using the coefficients from above we have a parity-check matrix, which is not systematic again. 
To put it into a systematic form, we add the third two to the first row to obtain the corresponding 
systematic parity-check matrix. This matrix is exactly the same as that of the previous example. 

  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1110100
0111010
1101001

1110100
0111010
0011101

HH o  

3. Below we present the corresponding syndrome calculator circuit for this (7,4) cyclic Hamming 
code. Let the transmitted codeword be (0111001) and the received word be (0110001) with the 
middle bit being in error. As the received bits are fed into SR, which were originally set to 0, 
its contents are modified as in the table below. 

 
Syndrome calculator for the (7,4) cyclic code generated by  .1)( 3XXXg ++=
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Contents of the Syndrome Calculator for the received word: 0110001 

Shift Input Bit Content of SR 
  000 (Initial State) 
1 1 100 
2 0 010 
3 0 001 
4 0 110 
5 1 111 
6 1 001 
7 0 110 

At the end of the seventh shift, the syndrome is identified from the contents of SR as 110. From 
the table presented with the previous example, the error pattern corresponding to this syndrome is 
(0001000) indicating the error is in the middle bit. 

Performance of Hamming Coded Systems: 

                               

 

QPSK

8PSK
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5.4 BCH and Reed-Solomon Codes and Examples 
BCH Codes:  
Two of the most important and powerful classes of linear block codes are Bose, Chaudhuri, and 
Hocquenghem (BCH) and its subclass of non-binary Reed-Solomon (RS) codes names after their 
inventors.  They are also known as t-error correcting codes. Primitive BCH codes offer design 
flexibility for integers  and   by the following parameters: 3≥m 2/)12( −≤ mt

       (5.34a) 12: −= mnlengthBlock
  mtnkbitsSizeMessage −≥:)(      (5.34b) 
  12:tan min += tdceDisMinimum      (5.34c) 
As it can be seen from these parameters, each BCH code is a t-error correcting code. There are 
many good coding theory references on designing and decoding BCH codes. Among them, 
Haykin in his chapter 10 (p.653) has a nice table listing several binary BCH codes. 

 
Reed-Solomon (RS) Codes: 
RS codes are very effective in channels with memory and when the set of input symbols is large, 
where burst-errors are likely to occur. These codes operate on multiple bits rather than individual 
bits, not like linear binary codes.  
• An RS (n,k) code is used for encoding m-bit symbols into blocks consisting of  
symbols, that is, bits, where   

12 −= mn
)12( −mm .1≥m

• The encoder expands a block of k symbols to n symbols by adding n-k redundant symbols.  
• When m is an integer power of 2, the m-bit symbols are called bytes. Most popular RS codes 

are 8-bit ones.  
• An t-error correcting RS code has the following parameters: 

12: −= mnlengthBlock      (5.35a) 
ksymbolsSizeMessage :)(       (5.35b) 

tknSymbolsSizecheckParity 2:)( =−−      (5.35c) 
symbolstdcedisMinimum 12:tan min +=     (5.35d) 

Error Probability of RS Codes:  The BER of an RS code where the channel (usually, BSC) error 
probability is p is approximated by:   

 jj

tj

m

mE
m

m

pp
j

jP −−
−

+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

≈ ∑ 12
12

1
)1(12.

12
1       (5.37a) 
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where  is the usual binary combinatorial coefficient. For a specific modulation technique this 

result can be turned into a BER. For instance, for M-PSK with 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n
k

mM 2= , we have: 

 PEPBER m

m

B .
12

2 1

−
==

−

        (5.37b) 

Following figure is included to illustrate the improvements in channel performance for 32-ary 
orthogonal signaling anf n=21, t-error correcting RS Coding2. 

 
• RS codes achieve the largest possible mind of any linear block code. Even though there are 
many GF choices, but the field  is the most common one and m=6 is the default size in 
many satellite communication designs. To get familiar, we start from the binary field GF(2) and 
extend to GF(2

)64(GF

m), which can be represented by a power of .α  An infinite set of elements, F, is 
obtained by starting with elements },,1,0{ α  additional elements are progressively generated: 

},,,,,1,0{ 20 LL jF αααα ==       (5.36a) 
• To obtain a finite set of elements of GF(2m) from F, the condition of “closed under 

multiplication” is imposed,  which results in fact that the elements satisfy:  
αα −=− 112m

  and      (5.36b) 11122 . ++−+ == nnn mm
αααα
},,,,,,,,1,0{ 202220 LL ααααααα −==

m
F                                      (5.36c) 

• Addition in GF(2m): It is the modulo-2 sum of each of the polynomial coefficients involved. 

                                                           
2 This section has an excellent coverage in Sklar’s Book, Chapter 8. The result and the associated graph was published 
originally in J.P. Odenwalder, Error Control Coding Handbook, M/A COM LINKABIT, Inc, San Diego, CA., July 
15, 1976 also appeared in T.C. Bartee, Data Communications, H.W. Sams Co. 1981. 
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Primitive Polynomials: RS codes are generated from primitive polynomials. An irreducible 
polynomial of degree m is primitive if the smallest positive integer n for which divides  

 An example is GF(2
)(Xf

.1+mX 3)= GF(8) will be  The mapping for this 
polynomial is shown below. 

.1)( 3XXXf ++=

 
 Field Elements 

 0 0α  1α  2α  3α  4α  5α  6α  7α  
X0 0 1 0 0 1 0 1 1 1 
X1 0 0 1 0 1 1 1 0 0 

Basis 
Elements 

X2 0 0 0 1 0 1 1 1 0 
  

Recall that GF(23)= GF(8) has 8 elements in the field, and hence  solving for the roots of 
, will result in three distinct roots for the given primitive polynomial 

 Hence, this 8-order polynomial must have 8 roots and they lie in the 
extension field of GF(8). Similarly, we will need to work with other primitive polynomials for 
higher orders as shown in the table below. 

0)( =Xf
.1)( 3XXXf ++=

m )(Xf  
3 31 XX ++  
4 41 XX ++  
5 521 XX ++  
6 61 XX ++  
7 731 XX ++  
8 84321 XXXX ++++  

 
 
Example 5.10: Using the results until now GF(23)= GF(8) will have  
 0  ;    with  and using +1=-1  1)( 3 =++= αααf αα −−= 13 13 +=⇒ αα
Similarly, 
  1234 )1.().( ααααααα +=+==⇒

2231245 1).().( αααααααααα ++=+=+==⇒  
223256 1)1.().( αααααααααα +=++=++==⇒  

03267 1)1.().( αααααααα ==+=+==⇒  
Thus the elements of  GF(23)= GF(8) will be  
 }                                                    (5.38) ,,,,,,,0{)8( 6543210 ααααααα=GF
This equation is frequently illustrated with the Linear Feedback Shift Register (LFSR) circuit. 
Addition and multiplication tables are also shown below. 
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Encoding Stage: A Reed-Solomon coding system uses the following six polynomials in its 
structure: 
1. Raw Information Polynomial  = d(x) 
2. Parity Polynomial    = p(x) 
3. Codeword Polynomial   = c(x) 
4. Generator Polynomial   = g(x) 
5. Quotient Polynomial   = q(x) 
6. Remainder Polynomial   = r(x) 
 
In terms of these polynomials, an encoded RS polynomial is simply: 

∑
−

=

=+=
1

0

.)()()(
n

i

i
i xcXpXdXc         (5.39) 

where  is a codeword IFF it is a multiple of the generator polynomial g(X), which is 
of the form: 

),...,,( 110 −nccc

       (5.40) ∑
=

=+++=
t

i

i
i

t xgxxxXg
2

0

2 .))...().(()( ααα

A common method for encoding an RS code is to derive p(X) by diving d(X) by g(X), which 
yields an irrelevant quotient polynomial q(X) and a relevant remainder polynomial r(X): 

)()().()()( XrXqXgXpXc ++=       (5.41a)   
If the parity polynomial is defined as being equal to the negatives of the coefficients of r(X) then 
we have (5.41a) simplifies and a block diagram for this implementation is shown below. 

 
)().()( XqXgXc =         (5.41b) 

   
In this block diagram, each “+” 
represents an exclusive-OR of two 
m-bit numbers, each “X” represents 
a multiplication of two m-bit 
numbers under GF(2m) and each m-
bit register contains an m-bit 
number  Initially, all registers are 
“0”, the switch is in “data” position. 
Code symbols  are 
sequentially shifted in to the circuit. 
As soon as the last code element 

.ib

knnn ccc −−− ,...,, 21
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enters, the switch goes to “Parity” position, the gate is OFF to cut-off the feedback loop. At the 
same instant, registers  contain the parity symbols . These are 
sequentially shifted to output. 

1210 ,...,, −tbbb 1210 ,...,, −tppp

 
• SR Decoding: Let the transmitted codeword and the corrupted receiver input code be: 

1
10 ....)( −
−++= n

n xvvXc ;      (5.42) 1
10 ....)( −
−++= n

n xrrXr
and  the error pattern defined as the difference polynomial between the two: 

1
10 .)()()( −
−+=−= n

n xeeXcXrXe       (5.43) 
Let the 2t-partial syndromes:  be defined as: },..,,.{ 220 tSSS
        (5.44) )()()()( iiii eecrS αααα =+==
which depends only on the error pattern. The first term in middle equality is zero due to the fact 
that each codeword is a multiple root of g(X) and . To locate and correct errors we need 
to develop an error locator polynomial. 

0)( =ic α

 
Suppose e(X) contains k errors, and tk ≤ , at locations:  and let the error magnitude 
at each location be . 

kjjj xxx ,...,, 21

ije
        (5.45) k

k

j
j

j
j

j
j xexexeXe ......)( 2

2

1

1
+++=

Now, define the set of error locator numbers 
         (5.46) kiforij

i ,...,2,1==αβ
 
Then the set of 2t-partial syndromes define the following system of equations, also known as the 
linear normal-equations: 

       (5.47) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+++

+++

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

t
kj

t
jj

t
j

kjjjj

kjjj

t kj

kj

k

eee

eee
eee

S

S
S

222

222
21

2

2

1

...

...
...

2211

2211

21

βββ

βββ

βββ

L

M

L

L

M

Any algorithm that solves (5.47) is a Reed-Solomon Decoding Algorithm. 
 

• Decoding Algorithms: Typical RS Decoders employ five distinct steps: 
 
Step 1: Calculate 2t partial syndromes as the remainder polynomial obtained from the received 

code polynomial and evaluating it at : ix α=
     (5.48) i

iiiii SremremqrremxXqXr ==++=⇒++= )).(()()).(()( ααααα
 
Evaluation of (5.48) can be implemented very efficiently in software by arranging the function so 
that we have a recursive form: 
      (5.49) 0321 ))).((()( rrrrr ii

n
i

n
i

n
i ++++= −−− ααααα LK

 
Step 2: Error-locator polynomial computation: In this stage Berlekamp-Massey Algorithm is 
normally used.  Let us define a new polynomial called “error-locator polynomial” in terms of the 
coefficient set in (5.47): 
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     (5.50) k
k

k
k xxxxX ..).1)....(.1()( 101 σσσββσ +++=++= K

and the relations between the coefficients of the last polynomial and the error-location numbers: 

       (5.51) 
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Partial syndromes are related to these to yield “Newton’s Identities in vector notation: 

       (5.52) 
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The most frequently used technique for solving (5.52) is known as the Berlecamp-Massey 
algorithm and it is covered in almost all coding theory textbooks.  

Step3: Actual error-location computation: Berlecamp-Massey algorithm does not yield the 
actual locations of errors in a received word. Chien Search algorithm is used in literature to 
calculate these specific error locations from the error polynomial. 

Step4: Magnitude error computation at each location. 

Step5: Error Correction: Knowing both the error locations and the magnitudes of the error in 
each location, the errors, up to t of them, are corrected using a software error correction procedure.  
 

5.5 Convolutional Codes with Examples 
Convolutional codes are fundamentally different from the previous classes of codes, in that a 
continuous sequence of message bits is mapped into a continuous sequence of encoder output bits. 
It is well-known in the literature and practice that these codes achieve a larger coding gain than 
that with block coding with the same complexity. A convolutional encoder: 

• encodes the entire data stream, into a single codeword.  
• does not need to segment the data stream into blocks of fixed size (Convolutional codes 

are often forced to block structure by periodic truncation). 
• is a state-machine with memory consisting of an M-stage shift register with prescribed 

connections to n modulo-2 adders, and a multiplexer that serializes the outputs of the 
adders.  

• A convolutional code is specified by three parameters or where ),,( Kkn ),/( Knk
1.  is the coding rate, determining the number of data bits per coded bit.  nkRC /=
2. K is the constraint length of the encoder a where the encoder has K-1 memory 

elements. 

Some definitions: 
1. Code Rate: A k-bit message sequence produces a coded output sequence of length  n bits and 

the code rate is defined by: 
                                                          (5.53) nkRC /=
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2. Constraint Length: K, the number of shifts over which a single message bit can influence the 
encoder output. For instance, in an encoder with an M-stage SR, the memory of the encoder equals 
M message bits, and 1+= MK  shifts are required for a message bit to enter and clear out. 
Hence, the constraint length of this coder is K. Below we have the most popular convolutional 
coder structure use din the field. 
 
Example 5.11: Convolutional encoder (rate ½, K=3) 
It is a machine with 3 shift-registers where the first one takes the incoming data bit and the rest, 
form the memory of the encoder.  

 

Input data bits Output coded bits 
m

1u

2u

First coded bit

Second coded bit

21,uu

 
 
Connection Vectors: We normally represent the encoder in terms of n connection vectors, one for 
each modulo-2 adder.  For encoder above, they are: 
   and 111:1 1 =gPath 101:2 1 =gPath  
Impulse Response:  It is the response of the encoder to a single bit that moves through it.  

Branch Words Register  
Contents 1u  2u  

100 1 1 
010 1 0 
001 1 1 

Input Sequence   : 1    1    1 
Output Sequence:  11  10  11 

The output sequence for the input “one” is called the impulse response. The response for a three 
bit long message is simply the superposition of individual responses as shown below: 

Input m Output 

1 11 10 11   

0  00 00 00  

1   11 10 11 

Mod-2 Sum 11 10 00 10 11 

This is shown in an illustrated manner below (from Sklar Figure 7.4) 
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Result: 

 
 

Encoder)101(=m )1110001011(=U

Effective code rate:  
• Initialize the memory before encoding the first bit (all-zero) 
• Clear out the memory after encoding the last bit (all-zero); i.e. a tail of zero-bits is 

appended to data bits. 
• m is the number of data bits and k=1 is assumed: 

data Encoder codewordtail
 

 
ceff R

Kmn
mR <

−+
=

)1( 

 
Generator Polynomial: If D is the unit-delay variable, then the generator polynomial for the ith 
path is defined by: 

Mi
M

iiii DgDgDggDg ++++= L2
210)(      (5.54) 

Then the complete encoder is described by an appropriate set of polynomials. 
 
 
Example 5.11 (Redone): Consider the rate ½ coder above with two paths 1 and 2.  
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• Impulse response of path 1: (1,1,1) and the corresponding generator polynomial is given by: 
21 1)( DDDg ++=  

Similarly, the impulse response for path 2: (101) results in a generator: 
   22 1)( DDg +=

• Let us assume the input sequence is : 10011, which can be written in terms of a polynomial: 
431)( DDDm ++=  

• As in the FFT, the convolution in the time-domain is transformed into multiplication in the D-
domain. We can write output polynomials and output sequences  for paths 1&2  in the form: 

11110011)1)(1()().()( 63243211 =++++=++++== DDDDDDDDDmDgDc
10111111)1)(1()().()( 6543243222 =+++++=+++== DDDDDDDDDmDgDc  

Finally, the output is obtained by multiplexing these two sequences: 
 )11,01,01,11,11,10,11(=c  

Note 1: The message sequence of length L=5 bits produced an encoded sequence of length 
n(L+K+-1)= 14 bits.  
Note 2 : We need to append a terminating sequence of K-1=2 zeros to the last input of the 
message sequence to restore the shift register to its zero initial state. These terminating sequence 
of K-1 zeros is called the tail of the message. 

Code Tree, Trellis and State Diagram Representations: 
Structural properties of convolutional codes are normally portrayed in graphical form by using one 
of three equivalent diagrams.  
1. Code Tree is a complete tree. That is, every node of a binary tree has two off-springs. (The 
case is similar for M-ary trees). An input “0” specifies the upper branch or left-child of a 
bifurcation, whereas “1” is for the lower branch or right-child. A specific path in the tree is traced 
from left-to-right in accordance with the input message sequence. Each branch of the input tree is 
labeled by the n digits of the output associated therewith.  

 
Example 5.11 (Redone):As it can be seen from the tree diagram, the input sequence (10011) 
when applied to the ½ rate coder in the example we have been studying for some time now, we 
find the output as (11,10,11,11,01), which agrees with the first five pairs of bits in the output 
sequence. 

These notes are © Huseyin Abut, September 2005. 



 81

• We can also observe that the tree becomes repetitive after the first three branches. For 
instance, two nodes labeled “a” are identical, so are all the other node pairs. This is due to the 
fact that the encoder has memory M=K-1=2 message bits. Hence, when the third bit enters the 
encoder, the first bit is shifted out from the SR. Consequently, the pairs of nodes labeled “a” 
generate the same code symbols.  

 
Therefore, we can collapse the tree into a form called “trellis.” Hence, a more instructive structure 
of “trellis” description of convolutional codes emerges. Before we do that it is logical to present 
the state diagram for this encoder, which will be used in building the trellis later. 
2. State Diagram: State machine representation for a rate ½ K=3 coder of the previous example 

is shown below. 

 
For the message:  we will have the following output sequence generated: 11011=m

 
The resultant output sequence including K-1=2 zeros to flush out the register will be: 
  U= 11  01  01  00  01  01  11 

3. Code Trellis: 
Trellis structures use the following convention: 
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• A code branch produced by an input “0” is drawn as a solid line, whereas a code produced by 
an input “1” is a dashed line. 

• Each input (message) sequence corresponds to a specific path along the trellis. For instance, 
the message (10011) produces the output coded sequence of di-bits (11,10,11,11,01), that 
agrees with our previous results. 

 
A trellis is strikingly more instructive than a tree since it brings out explicitly the finite-state 
machine structure as we have labeled them at the extreme left of the above figure. Here {a,b,c,d} 
are the state labels of our machine. Some terminology: 

• State: Each (K-1)-bits stored in the encoder’s shift registers represent identifies a state. Given 
that the current bit is  at time j then the portion of the message sequence containing the 

most recent K-bits are written as: . In the case of rate ½ encoder with K-
1=2, we have four distinct states {a,b,c,d} and the corresponding state-diagram is very simple. 

jm
),,,( 11 jjKj mmm −+− L

• Levels (Depths): A trellis contains (L+K)-levels, where L is the length of the incoming 
message sequence, and K is the constraint length of the code. The levels of a trellis are labeled 
as j=0,1,2,…,L+K-1. The first (K-1)-levels correspond to the encoder’s departure from the 
initial state and the last (K-1)-levels correspond to the encoder’s return to the same state. It is 
worth pointing out that not all the states can be reached in these two portions of a trellis. 
However, in the central portion of a trellis, all the states of an encoder are reachable. 
 

ML Decoding and Viterbi Algorithm: 
Let m be a message vector, the code vector going into a discrete memoryless channel and r  be 
the corresponding received vector. The decoder makes an estimate m̂  of the message. Since 
there is one-to-one correspondence, the decoder may equivalently produce an estimate ĉ  of 
the code vector. We can now reformulate the ML decoder principle: 

ML Decoding Rule: Choose the estimate ĉ , for which the log-likelihood function )|((log crPe  is 
maximum.  If the channel is BSC then this rule simplifies to the following case:  
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Choose the estimate ĉ  that minimizes the Hamming Distance between the received vector r  
and the transmitted code vector c . In this case, ML decoder is again a minimum distance 
decoder. The Viterbi Algorithm implements this rule best. 

Viterbi Algorithm: 
The equivalence between ML and minimum distance decoding for a BSC implies that we 

may decode a convolutional code by choosing a path in the code tree or trellis whose coded 
sequence differs from the received sequence in the fewest number of places. Let us consider the 
case of rate ½ and K=3 decoder of the previous example. At level j=3, there are two paths entering 
any of the four possible nodes in the trellis and they are identical onward from that point! So, the 
task of minimum distance decoder is to make a decision at that point as to which of these two 
paths to retain, without loss of performance. Similarly, we need to do the same for j=4 and on. 
Viterbi Algorithm is designed for that task by computing a metric (usually, the Hamming distance) 
for every possible path in the trellis. The paths retained are called survivor or active paths. In the 
case of multiple paths entering a state with identical metric, we employ a tie-braking rule.  
 
More comprehensive treatment of Viterbi Algorithm and its applications to convolutional and 
trellis coded modulation will be presented as a student project later in the semester. 
 

5.6 Trellis Coded Modulation and Examples of Ungerboeck Codes 
  

Until now, encoding is performed separately from modulation in the transmitter and 
likewise for detection and decoding in the receiver. Moreover, error control provided by sending 
additional bits as parity-check information lowers the baud rate per channel bandwidth. To attain 
more effective use of the available bandwidth and power, combined coding and modulation is 
shown to be the way. By doing so, we redefine the coding process as the process of imposing 
certain patterns on the transmitted signal. Trellis codes for band-limited channels result in a 
combined entity called “Trellis-Coded Modulation (TCM)” due to the sentinel work by 
Ungerboeck in late seventies. It has three basic features: 

 
1. Number of signal points in the constellation is larger than what is required for; the additional 

points allow redundancy for forward error-control (FEC) coding without sacrificing 
bandwidth. 

2. Convolutional coding is used for introducing a certain dependency among sequences of points. 
3. Soft-decision decoding is performed in the receiver using trellis structures. 
 
TASK: In an AWGN regime, ML decoding of trellis codes is to find that particular path through 
the trellis with Minimum -Squared Euclidean (MSE) distance to the received sequence. 
 
• This mse distance restricts the choice of modulation schemes to BPSK and QPSK. This is due 

to the fact that the maximizing Hamming distance is NOT equivalent to MSE for other codes. 
• Even though, a more general treatment is possible, the systems designed are traditionally 

confined to two-dimensional constellations as described by the following algorithm. 
 
Partitioning:The approach used for designing this type of trellis codes involves partitioning an 
M-ary constellation successively into 2,4,8,… subsets with size M/2, M/4,… and having 
progressively larger increasing MSE distance between their respective signal points, thereby more 
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efficient coded modulation for band-limited channels is possible. Below we have two partitioning, 
one for 8-PSK and another one for 16-QAM with respective MSE distances in an increasing order:  

PSKforddd −=<=<= 822)8/sin(2 210 π      (5.55a) 

QAMforddddddd −=<=<=< 162222 0302010    (5.55b) 

 

 
This subject will also be a part of a student presentation. 
 
 
Asymptotic Coding Gain:  These coders are measured in terms of their Asymptotic Coding 
Gains defined by: 

  )(log20 10
ref

free
a d

d
G =         (5.56) 

where is the free Euclidean distance of the code and is the minimum Euclidean distance 
of an uncoded modulation scheme operating with the same signal energy per bit. 

freed refd
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Example 5.12: Find the coding gain for the TCM for 8-PSK for 2 bits/symbol and rate-1/2 
Ungerboeck Coder. From the partitioning diagram, we see that each branch of this coder 
corresponds to a subset of two antipodal signal points. The free Euclidean distance can be no 
longer than  and 22 =d
   22 == dd free

The minimum Euclidean distance of an uncoded 4-PSK (QPSK) viewed as a reference operating 
with the same energy per bit is simply: 
  2=refd  
Therefore, the coding gain is: 

  .0.3)
2

2(log20 10 dBGa ==  

Below we present a table of asymptotic coding gain of Ungerboeck 8-PSK codes wrt QPSK. 

       Asymptotic Coding Gain of Ungerboeck 8-PSK Codes compared with Uncoded 4-PSK. 
Number of states 4 8 16 32 64 128 256 512 
Coding Gain dB 3.0 3.6 4.1 4.6 4.8 5.0 5.4 5.7 
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