
 22

2. OPTIMUM RECEIVER PRINCIPLES 
2.1 Maximum Aposteriori Receiver 

 Consider the generic block diagram of end-to-end communication over the ubiquitous additive 
white Gaussian noise (AWGN) channel. 

 
• Source:  with apriori probabilities:  }{ im )}({ imP
• Transmitter: A particular message symbol is represented by a signal waveform allowable in 
the signal space permitted for a given modulation technique.  

)()( tstsmm ii =⇔=               (2.1) 
• Channel:               (2.2) )()()( tntstr w+=

Problem 1: Design an optimum receiver which estimates m  for the transmitted signal  of a 
source output m  such that the probability of error 

ˆ )(ts
)ˆ(Pr)( mmobP ≠≡ε  is MINIMUM. 

Problem 2: Given that  are UNKNOWN, which is the real-life problem in many 
emerging  communication systems, design a similar optimum receiver. (Inherently more difficult 
task!). 

)}({ imP

VECTOR CHANNEL: Consider the case when a sequence of source outputs are bundled into a 
vector form and transmitted as the case of QAM and other m-ary signaling schemes. In some 
cases, the signal itself may be in a vector form to start with, as in the case of LPC coefficients in a 
CELP Speech coder. 

 
 
• Source Information is mapped into source vectors:  }1,...,1,0;{ −= Misi , where each vector is 
composed of N-components:  ],...,,[ 21 iNiii ssss = . 
• Received Information is also mapped into vectors:  

],...,,[ 2211 iNiNiiiiiii nsnsnsnsr +++=+=       (2.3) 
Given that the received vector is a point ρ=r  in the N-dimensional space with coordinates: 

]N,...,ρ,ρ[ρρ 21=  then the optimum receiver must compute the transmitted vector signal is  for 

the message  having a maximum aposteriori probability from its knowledge of the set of 
parameters: 

im

srP | , }{ is , and the source distribution: .  )}({Pr mob
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In other words: 
kmm =ˆ    if   kiallforrmobrmob ik ≠=>= )|(Pr)|(Pr ρρ        (2.4) 

which is a nearly impossible challenge to meet in many real-life situations.  

Do we have an equivalent task? 
Consider the correct decision for a given incoming vector: 
  )|(Pr)|(Pr ρρ === rmobrCob k          (2.5) 
and the overall correct decision is simply ensemble of correct decisions: 

  ρρρ dPrCobCob r )().|(Pr)(Pr ∫
∞

∞−

==         (2.6) 

Since 0)( ≥ρrP  we do not need to include it in the maximization process, i.e. only the term 

)|(Pr ρ=rob C must be maximized. Let us use the Bayes Rule on (2.5) 
  )(/)|(Pr).()|(Pr ρρρ ririi PmobmPrmob ==         (2.7) 

but the statement  is equivalent to imm = iss =  which implies: 
  )|(Pr)|(Pr irir ssobmob == ρρ         (2.8) 

Furthermore, the denominator term is independent of the index i, hence, the maximization and we 
have the revised principle for our optimum receiver: 

kmm =ˆ   if )|(Pr).( iri ssobmP =ρ  is maximum when ki =       (2.9) 

When  are not known and the receiver can only maximize the last portion of (2.9). Then we 
have a restricted version of the general optimum receiver called MAXIMUM-LIKELIHOOD 
(ML) Receiver. 

)( imP

 
ML Receiver Principle: 
  when kmm ⇒ˆ )|(Pr ir ssob =ρ is MAXIMUM.     (2.10) 
Decision Regions are needed to perform the mapping properly for each signal vector.  
 
Example 2.1: Given (3) input vectors in a 2-D vector space with the following signal set 
assignment: ]2,1[00 =⇒ sm ;   ]1,2[11 =⇒ sm ;   and  ]2,1[22 −=⇒ sm  

 
 
 
 
 
 
 
 
 
 

Let us also assume that the input message probabilities:  are given. For this 
assignment, our receiver will compute: 

)(),(),( 210 mPmPmP
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 )|(Pr).( iri ssobmP =ρ  for I=0,1,2.  
An ML Receiver will choose the index of the message with the largest product above.  
For every point ρ  in ),( 21 ϕϕ  plane an assignment can be made if the plane is partitioned into 
disjoint regions  for i=0,1,2; which are called decision regions, very similar to the codeword 
selection process in Vector Quantization (VQ). Then we have the ML receiver as a simple 
geometric map: 

}{ iI

kk mmIr =⇒= ˆ  and an error is made if  kk Iriffmm ⊄⇒ˆ      (2.11) 

 
2.2 ML Receiver for AWGN Channel 

Given that the signal in the channel is corrupted by a zero mean AWGN with a variance .  2σ
 ],...,,[ 2211 NN nsnsnsnsr +++=+=         (2.12) 
Now: 
 ρ=r  when ii sniffss −== ρ            (2.13) 
And then  

1,...,1,0)|()|( −==−== MiforsssPssP iinir ρρ        (2.14) 

Since the signal s  and the channel noise n  are statistically independent nsn PP =| . This simplifies 
(2.14) into: 
 )()|( iniin sPsssP −==− ρρ           (2.15) 

In this case, the general ML decision function becomes )().( ini sPmP −ρ . Now the components of 
signal is assumed to be independent, noise has a zero-mean we can write the noise distribution: 

 }
2

1exp{
)2(

1)(
1

2
22/2 ∑

=

−=
N

j
jNn uuP

σπσ
        (2.16) 

Let us use the following dot-product notation: 

 ∑
=

∗ =•=
N

j
juuuu

1

22  

Our distribution is written as: 

 }
2

1exp{
)2(

1)( 2
22/2 uuP Nn σπσ

−=          (2.17) 

Then for this probability system we have the ML principle as: 

 }
2

1exp{).(ˆ
2

2 iii smPwhenevermm −−⇒ ρ
ρ

 is maximum.   (2.18) 

Equivalently, the task is to MINIMIZE: 

 )(log).2( 22

iei mPs σρ −−         (2.19) 

The first term is the Euclidean Distance between the received vector and a candidate signal vector. 
If all the messages are equally likely then the optimum decision rule does not depend on the index 
at all and we have the MINIMUM MEAN-SQUARE (MMS) DISTANCE Receiver. That is we 
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assign the message index of the closest neighbor of the incoming vector, which is also known as 
the Nearest Neighbor Rule in VQ and other clustering techniques. 

2.3 Correlation and Matched-Filter Receivers 

If we revisit the Communication System Block Diagram for vector signals as shown below, it 
would be necessary to synthesize waveform signals to be transmitted over real-life channels, such 
as the twisted-pair or coaxial cable, microwave or fiber-optic links. 

 
• It is necessary to synthesize the signal set at the transmitter. This can be achieved by 

"building blocks waveforms".  
)}({ tsi

• Synthesis signal sets and Recovery of signal vectors: 
1. A set of N integrating filters are used to generate N signal components with strengths . }{ ij
2. The filter outputs are summed to yield the signal waveform:  to be transmitted for a 

particular message  for each of M different messages. 

s
)(ts

im

1,...,1,0
1

)()( −=∑
=

= Mifor
N

j
tjijstis ϕ          (2.20) 

1. Let us choose the building-block waveforms from an orthonormal set such that: 
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Njiallfor
ljif
ljif

dttltj ≤≤
⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=∫
∞

∞−
,1

0
1

)()( ϕϕ                    (2.21) 

2. This will yield a probability of error independent of the actual wave-shapes. 
3. We can exactly recover the signal vectors and hence, the messages in the absence of channel if 

we push these synthesized waveforms of (2.20) into a simple integrating filter structure as 
shown above. 

ils
N

j
jlijsdttl

N

j
tjijsdttltis =∑

=
=∑

=
∫∫ =

1
)(]

1
)([)()( δϕϕϕ     (2.22) 

   If we perform similar integration for all the branches we obtain: ],...,2,1[ iNsisisis = . 

4. Examples of Orthonormal Signal Sets: 
• Orthonormal time-shifted pulses:  Njforjtgtj ,...,2,1)()( =−= τϕ  

• Orthonormal Fourier Transform pulses:  
⎩
⎨
⎧ <≤−

=
otherwise
Ttj 0

0/1)( ττϕ  

The optimum ML receiver of the system performs: 
Set: )(log2ˆ 22

inik mPsrifmm σ−−= is MINIMUM.                 (2.23) 
Square operations can be eliminated in (2.23) by observing: 

 2)(222
isisrrisr +•−=−          (2.24) 

where the dot product is given also by: 

 ∑
=

≡•
N

j
ijsjrisr

1
          (2.25) 

Observations: 
• Note 1: First term in (2.24) is independent of the index and no need to worry in optimization. 
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• Note 2: Last terms in (2.23) and (2.24) depend only on source side information supplied by the 

designer then they can be combined into a constant parameter set and burned into the ROM of 
the system: 

]2)(log2)[2/1( isimPnic −≡ σ            (2.26) 

• The optimum receiver of (2.23) is now equivalent to: 
Set: )(ˆ iik csrifmm +•= is MAXIMUM.         (2.27) 

which is simply the structure of a CORRELATION RECEIVER. 

Note: When the source vocabulary size M is not very large this implementation is not costly and 
most of the operations to the right of the "Integrators" can be done by table look-ups. However, 
when M is very large then  the dot-products are usually handled by using "DSP" based devices. 
The use of multipliers can be avoided if we replace the structure to the left of the "Weighting 
Matrix" as follows: 
1. Let us consider a filter with an impulse response  

                )()( tTjtjh −= ϕ .            (2.28) 

 
 
2. If the input to this filter is )(tr  then its response is simply: 

∫
∞

∞−
+−=∫

∞

∞−
−= ααϕαααα dtTjrdthrtju )()()()()(       (2.29) 

3. When we sample the output at t=T we have 

jrTju ≡)(            (2.30) 

4. Finally, the task is to push it through the weighting matrix and the rest of the receiver above. 
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This receiver is called a "MATCHED-FILTER" Receiver since it is constructed by using the 
shifted versions of the signal building block functions: )( tTj −ϕ . 

 
Example 2.2: Consider the case for a gated-sinusoidal tone signal with a gate period of T seconds 
as shown below. The convolution operation in the matched -filter above will result in  a triangular 
enveloped sinusoid with the same frequency and thus it will peak at the sampling instant T. 
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