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1. INTRODUCTION 

 
• Volume of data transmission for the users of personal communications and Personal computer 

systems is growing unbounded, even to the extend of bringing the service providers to a complete 
stall.  

• World-wide-web facilities have opened the eyes of millions of users to be more demanding on 
everything they interface with in their daily lives. 

• Increasing demand for  
• high quality digital telephony,  
• digital TV, and  
• multi-media communications over advanced networks prompted numerous studies in the area of 

digital communications.  
• Primary objective of this course is to broaden general and working knowledge of engineers and 

scientist in the area of modern techniques on emerging digital communication systems and in their 
implementations. 

• This course is designed for engineers and researchers involved in all fields of digital communications 
and signal processing including: signal processing and data compression, video coding in multimedia 
applications, telecommunication systems and services, defense and manufacturing. 

 
1.1 Communication System Models 

• Generic Digital Communication Systems and Associated Signals: 
 

• Messages are normally discrete and finite; but they could be very large in quantity. 
,...}2,1;{ == imm i                   (1.1) 

 
• There is a particular signal waveform generated and transmitted for each message mI: 
                  (1.2)  ,...}2,1);({)( == itists
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• White or bandlimited channel noise, device noise, distortion due to digitization, compression, 

etc., intersymbol interference, near and far end cross-talk, jammers are all generically lumped 
into "NOISE": n(t).   

• Received signal is commonly represented as the sum of the transmitted signal (attenuated and 
delayed in the channel but reconstructed back to the original in the front end) plus the additive 
noise from all the ills mentioned above: 

)()()( tntstr +=                          (1.3) 
• It can be one of many possible signal waveforms: 

,...2,1);({)( == jtrtr j }                        (1.4) 
Some signals might be lost in the channel as in the case of an erasure channel, or foreign signals 
might be picked up as in the case of a jammed channel. Therefore, it is not necessary that i=j. 
   
• Detected and decoded signal: 

,...}2,1);({)( == jtutu j                          (1.5) 
• Reconstructed message: 

,...}2,1;ˆ{ˆ == jmm j                         (1.6) 
 
TASK: Design a communication system with the property that transmitted 
signal mi is received without error: 
                 (1.7) ij mm =ˆ
• Shannon's Point-to-Point Digital Communication Systems Model: 
 

 
Source:  Set of Symbols generated by a person or a system to be sent over a transmission medium 
to a user. Examples: Speech/audio, Image/video, Telemetry and other sensor data, Computer data, 
Bio-sensor readings, etc. 
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Source Encoder: Messages from users are highly redundant. Compression of redundancy in a 
systematic manner is called source encoding. Examples: 
• CELP coding for speech/audio signals. 
• JPEG coding for still images. 
• Lempel-Ziv universal lossless coding for text compression. 
 
Channel Encoder: Coding for improved transmission over physical medium. Examples: 
• Run-length line coding 
• Convolutional codes 
• QAM, FSK, DPSK, QPSK, and other codes for data transmission. 
 

In many cases two are combined and called Encoder and described by: What designer gets to 
do to signal before sending it over the channel. It can include:  

• Preprocessing,  
• Sampling and A/D conversion,  
• Signal decompositions,  
• Modulation, and  
• Compression.  
 

Goal: Prepare signal for channel in a way decoder can recover good reproduction. 
 
Channel: Physical medium for communication process. This portion of communication system is 
out of designer's control. It is often described in terms of a conditional probability distribution and 
a linear filtering operation. It could be: Deterministic or Random. Examples:  
• On-line media: 

• Null (transparent) channel 
• Air/deep space 
• Telephone lines, twisted-pair/coaxial cable (POTS). 
• Ethernet 
• Fiber-optic link 

• Off-line media: 
• CD 
• Magnetic tape/Magnetic disk 
• Computer memory 

 
Channel and Source Decoders: They attempt to perform inverse operations of the source 
encoder and the channel encoder, respectively. The combination is called as the Decoder and 
described by: What decoder gets to do to channel output in order to reconstruct or render a version 
of the signal for the user. It can include inverses or approximate inverses of encoder operations, or 
other stuff to enhance reproduction. 
 
Distortion and Noise: When the continuous or analog signals are digitized and compressed there 
is always a cost associated with the process. In digitization of band-limited signals, we employ 
Nyquist Theorem to guarantee exact reconstruction. However, any other source compression is 
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realized at a cost of varying degree of imperfect representation. This is called distortion and it is 
NOT recoverable. In addition, signals in the communication link are faced with number of ills. 
They are loosely called noise. 
 

The presence of noise on a signal changes it shape and characteristics and it limits the 
ability of the intended receiver to make correct symbol decisions, and thereby the effects the rate 
of reliable communication. Examples:  
• Additive Gaussian White Noise. 
• Device noise.  
• Atmospheric noise in the microwave channels  
• Intersymbol interference in data communication systems  
• Interspeaker interference in voice communications  
• Near-end and Far-end crosstalk and Echoes in Link and chamber  
• Friendly and unfriendly jammers, etc. 
 
User: The intended user of the input information-bearing messages, usually a replica of the 
original input messages. The messages coming to user may not need an identical replica of the 
sender’s information symbols. A good example would be access control of a safe room by the 
voice print of intended user. 
 

1.2 Review of Probability Theory  
Underlying assumption in communication: If the intended user knew what the source 

message was there is no need to communicate. 
Real-life scenario: Transmitter is connected to a random source; channel is corrupted also in a 
random manner; and the receiver cannot predict a transmitted message with certainty. 
 
Example 1.1: Consider a Binary Symmetric Channel (BSC) with a bit-error-rate (BER) of e, 
where a binary source sends {1,0} with probability {p, 1-p}: 
 

If we transmit ASCII characters (7-bit+parity bit) over this BSC: 
  

  
                                  

 e

                                                
      

  p(1)=p    1                                     1     q(1)=q

Source                                        Receiver

1-e

e

1-e
p(0)=1-p   0                                    0     q(0)=1-q

}127,...,2,1,0);0,1({ == imm iε                        (1.8) 
   and each digit is either 0 or 1. 7654321 dddddddim =

Then we have a digit-by-digit binary transmission. Alternatively, if we rewrite (1.8) using 
                         (1.9) 7

7
2

2
1

1 2....2.2. −−− +++= dddmi
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We can use m-ary signaling levels as shown below and transmit only one specific waveform for 
each message. This principle is now actively pursued in emerging communication systems with 
multi-level signaling. 

 
Example 1.2: Radio Communication problem. 

Signals from the transmitting antenna are reflected from (and refracted by) various layers of 
the ionosphere and scattered. This constitutes a "Diversity Channel," and the signals picked up by 
the receiving antenna are multi-path scattered signals from the genuine source as well as all other 
sources operating at the same frequency band, which are labeled as friendly and unfriendly 
jammers. Reception possibility and the quality are governed by a set of statistical measurements 
performed on incoming signals. 
 

127-
  :
  64-
  63-
  :
  32-
  31-
  :
    1-
    0- m1              m2                 m3           time

• An experiment is random when the conditions of measurements are not predetermined with 
sufficient accuracy and completeness to permit a "precise" prediction of a random trial, such 
as, digit-by-digit transmission of binary symbols over a BSC. 

• Outcomes: Measured quantities from an experiment, such as amplitude and phase 
characteristics of incoming signals in a radio receiver. 

• Results: Set of outcomes between which we choose to distinguish, such as AM signals only in 
a narrow-band of interest. 

• Sample Space: S: Set of all possible outcomes of an experiment. 
• Event:  A = {w: Outcomes such that some condition on w is satisfied}              (1.10) 
 
Kolmogorov's Probability Axioms: 
1. To every event Ai,  a unique number P(Ai) is assigned such that: 

1)(0 ≤≤ iAP                        (1.11) 
2.                          (1.12) 1)( =SP
3. If A and B are mutually exclusive; that is, φ=∩ BA  then 

)()()( BPAPBAP +=∪                      (1.13) 
3.A. If A and B are not mutually exclusive; that is, φ≠∩ BA  then 
  )()()()( BAPBPAPBAP ∩−+=∪                                (1.14) 
 
• Compliment: A : Compliment of A. 
• Union event: BAD ∪=   
• Total Probability: If  all  are mutually disjoint then iA
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)()( ∑=
i

i
i

i APAP U                        (1.15) 

• Joint Probability: If the sample space is partitioned into events of to different sets, such as, the 
amplitude and phase ranges of an incoming signal coming to a radio receiver, where 

},...,2,1;{ niAi ==     and   },...,2,1{ mjB j ==  

                         (1.16) 1),(0 ≤≤ ji BAP

• Marginal Probability: If  are mutually exclusive or disjoint then: jB

)(),(
1

ij

m

j
i APBAP =∑

=

                      (1.17) 

      and 

                         (1.18) 1)},({
1 1

=∑ ∑
= =

j

n

i

m

j
i BAP

• Conditional Probability:  

If >0    then   )(BP
)(

),()|(
BP

BAPBAP =                       (1.19) 

If both    and      then: 0)( >AP 0)( >BP
  )().|()().|(),( APABPBPBAPBAP ==                                (1.20) 
Which is known as the Bayes Rule. 

 
Example 1.3: Die Tossing Experiment. 
   }6,5,4,3,2,1{=S
Let    .   }5,3,1{}_{ == outcomesOddA 2/1)( =AP  
 
a)  }6,4,2{}_{ == outcomesEvenA    2/1)( =AP  
 
b) If  a new event is defined as small face values:  }3,2,1{=B  and  

BAD U=  then    .6/4})5,3,2,1({)( == PDP      
Because: 

3/23/11})3,1({2/12/1)()()()( =−=−+=∩−+= PBAPBPAPDP  
 
c) Given that the outcome was small what is the probability that it was odd? 

3/2
2/1
6/2

)(
),()|( ===

SmallP
SmallOddPBAP  

Bayes Theorem: If  are disjoint then  and  then },...,2,1{ niAi == SA
n

i
i =

=
U

1
0)( >BP

 

∑
=

== n

i
ii

iii
i

APABP

APABP
BP

BAPBAP

1
)().|(

)().|(
)(

),()|(                                 (1.21) 

 
 
Example 1.4: Communication over a noisy channel. 
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)( iAP : Apriori probabilities of input events (Designer's Problem.) 
)|( BAP i : Aposteriori probability of  conditioned on having observed the received signal B to 

be a particular outcome. (Optimum communication task of a receiver!). 
iA

 
Statistical Independence (SI): If occurrences of A does not depend on occurrences of B then 
     and   )()|( APBAP = )().(),( BPAPBAP =    (1.22) 
and A,B are called statistically independent. 
 
Example 1.5: Die tossing experiment with: Odd: 2/1)( =AP    and   Small:  2/1)( =BP
Probability of Odd & Small:   3/1})3,1({),( == PBAP  
 3/14/1)2/1).(2/1()().( ≠==BPAP . Therefore, A,B are not SI. 
 
Example 1.6: Because of silences, voice communication is very inefficient on dedicated POTS 
lines. Measurements show that "1/3" of the time actual speech goes through the line. This excess 
capacity can be used (a) to increase the service by TASI or DSI type services to better utilize the 
bandwidth or (b) to improve the performance in noisy channels. Given that each bit has a BER of 
0.1% over a BSC and consecutive bits are SI what would be the bit rate if three bit-long sequences 
are sent for each bit? Assume that a majority rule decoder is used in the receiver to decide each 
triplet. 

Solution: 
Symbols are incorrect when 2 or 3 out of three bits are in error. If we assume p=1/2 then 

6032 10.3]})999.0.()001.0()999.0.()001.0.(3).[2/1{(2 −≈+=BERTotal  
 
We have traded-off rate (1/3) for a significantly reduced BER. This simple rule has been used in 
classical computer memory storage algorithms. 
 

A B
Channel

                           
Lost
message                           Noise

  
                                  

.0 0 1

                                                

      

  p ( 1 )= 0 . 5   1                                  1      q (1 ) = 0 .5

S o u r c e                                         R e c e i v e r

.9 9 9

. 0 0 1

.9 9 9
p ( 0 ) = 0 . 5    0                                     0     q ( 0 )= 0 . 5
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1.3 Random Variables 
 

Means of associating real variables with random experiments and their outcomes. 

 
Example 1.7: Coin tossing experiment with a Sample Space: },{ THS =   
Let us define a binary assignment function to the outcomes of each toss: 
 

⎩
⎨
⎧

=
=

=
Tsif
Hsif

sX
0
1

)(  

Example 1.8: Voltage reading across a load: 
 Sample Space:     and   ℜ=S VsX =)(  

0S
0x

XR
S

 

• Probability Notations: Given a continuous random variable: X, consider the event xX ≤ , we 
can represent the probability of this event in many ways: 

)(Pr)Pr()( xXobxXxXP ≤=≤=≤                     (1.23) 
 

• Cumulative Distribution Function (cdf): 
∞<<∞−≤= xforxXPxF )()(                     (1.24) 

 
Properties of cdf: 

1.                          (1.25) 1)(0 ≤≤ xF
2.                                   (1.26) 1)(0)( =∞=−∞ FandF

• Probability Density Function (pdf): 

∫
∞−

===
0

)()()()()( 0

x

X dxxpxFand
dx

xdFxpxf                               (1.27) 

• If a r.v. is discrete or mixed type, the discrete portion is normally represented by probability 
mass functions (pmf): 

∑
=

−≤=
n

i
ixxxXPxp

1
)().()( δ                                 (1.28) 

• If    ∞<<<∞− 21 xx
then   )()()( 2112 xXxPxXPxXP ≤<+≤=≤                                (1.29) 
or equivalently: 
  )(Pr)()( 2112 xXxobxFxF ≤<+=                                (1.30) 
and 
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                                (1.31) ∫=−=≤<
2

1

)()()()(Pr 1221

x

x
x dxxpxFxFxXxob

 
Multiple Random Variables 

 
Consider an experiment with a sample space S and the outcomes are mapped by two 

different functions, such as an AM receiver, where each received waveform has random amplitude 
and a random phase value. 

 

0S

1x

1XR

S

2XR
2x

• Joint Cumulative distribution function: 

∫ ∫
∞− ∞−

=≤≤=
1 2

2121221121 ),(),(),(
x x

duduuuPxXxXPxxF                                          (1.32) 

• Joint probability density function: 

21

21
2

21
),(),(

xx
xxFxxp

∂∂
∂

=                       (1.33) 

• Marginal pdfs: 

∫
∞

∞−

= 2211 ),()( dxxxpxp                       (1.34) 

• Properties: 

1.                      (1.35) 1),(),( 2121 ==∞∞ ∫ ∫
∞

∞−

∞

∞−

dxdxxxpF

2. 0),(),(),( 12 =−∞=−∞=−∞−∞ xFxFF                                 (1.36) 
 
• Conditional probabilities: 

)(

),(

)(

),(

)|()|(
2

2

2

2

2

21

212211

1

xp

duxup

x
xF

x
xxF

xxFxXxXP

x

∫
∞−=

∂
∂
∂

∂

=≡=≤                              (1.37) 

and   
)(

),()|(
2

21
21 xp

xxpxxp =    if                                          (1.38) .0)( 22 xofvaluesallforxp >
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• Revisit Bayes Theorem: 
)().|()().|(),( 11222121 xpxxpxpxxPxxp ==                                            (1.39) 

• For multiple dimensions of order n: 

n

n
n

n xxx
xxxFxxxp

∂∂∂
∂

=
...

),...,,(),...,,(
21

21
21                                  (1.40) 

then: 
                               (1.41) ),...,().,...,|,..,(),...,,( 11121 nknkkn xxpxxxxPxxxp ++=
If the multiple r.v. are statistical independent: 
 )                      (1.42) ()...().(),...,,( 2121 nn xFxFxFxxxF =
 )                                  (1.43) ()...().(),...,,( 2121 nn xpxpxpxxxp =
 

Functions of Random Variables 
Typical Question: If    is a new r.v. obtained operating on X, can we compute statistics 
of Y from those of X? 

)(XgY =

 
Example 1.9: Linear functions, such as linear filtering or prediction operations. 
 If  a>0 and constant and Y=aX+b then 

 )()()()(
a

byXPybaXPyYPyFY
−

≤=≤+=≤=       (1.44) 

Example 1.10: Quadratic functions: 

 )())(()()( 2
a

byXPybaXPyYPyFY
−

≤=≤+=≤=      (1.45) 

 )()()(
a

byF
a

byFyF XXY
−

−−
−

=                    (1.46) 

and since   
a

byx −
±=2,1  are solutions of our quadratic equation we have: 

 
)(2
)(

2
)()(

2

2

1

1

xa
xP

ax
xPyp XX

Y −
+=                     (1.47) 

• In general, if there are n real roots of    )(XgY =  then the fundamental theorem of pdf 
transformations states that: 

∑
= =

′
=

n

i xx

iX
Y

i
xg

xpyp
1 )(

)()(    where    
ixxxg

=
′ )(  is the derivative of g(x) at x=xI                     (1.48) 

and  
Jgxgxgxpyyyp nnXnY ),...,,(),...,,( 11

22
1

1121
−−− ====                            (1.49) 

where  is the i1−= ii gx th solution of  )(XgY =  equation and the Jacobian is given by: 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=
−−

−−

n

n

n

n

y
g

y
g

y
g

y
g

J
11

1

1

1

1

1
1

L

MMM

L

          (1.50) 

 
Example 1.11: Linear Predictive Coding (LPC) with constant coefficients: 

 AXY =      or                                 (1.51) niforxay
n

j
jij ,...,2,1

1
==∑

=

Assume A is non-singular then we have   YAX 1−=  with solutions: 

  are the elements of }{,...,2,1
1

ij

n

j
jiji bandniforybx ==∑

=

1−A . Since the system is 

linear we have: 

  )det(
)det(

1 1−== A
A

J          (1.52) 

and the pdf of the output is: 

 
)det(

1).,...,,(),...,,( 2121 A
xxxpyyyp nXnY =         (1.53) 

 
1.4 Statistical Averages & Characteristic Functions  

The generic formula for the computation of statistical (ensemble) averages is given by:  

∫
∞

∞−

= dxxpxXE X
nn )(}{         (1.54) 

1. Mean or Ensemble Average (not time average) : n=1 
  xxmXE μ==){         (1.55) 

2.  If  then       (1.56) )(XgY = ∫
∞

∞−

== dxxpxgXgEYE X )()()}({}{

3. Mean Square Value:   If 2XY =  then       (1.57) ∫
∞

∞−

= dxxpxXE X )(.}{ 22

4. Central Moments: It is the case for:  n
xmXY )( −=

      (1.58) ∫
∞

∞−

−=−= dxxpmxmXEYE X
n

x
n

x )(.)(}){(}{

4. Variance is simply the case for n=2: 

∫
∞

∞−

−=−= dxxpmxmXE Xxxx )()(}){( 222σ       (1.59) 
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It is worth noting that the computation of variance in (1.59) requires a two-pass procedure 
to compute the mean first and then the variance. However, it can be shown from the superposition 
theorem that: 
       (1.60) 22222 }{}){(}{ xx mXEXEXE −=−=σ
which is a single pass operation. 
       
5. Other moments: 

∫ ∫
∞

∞−

∞

∞−

−−=−− 212122112211 ),(.).()(}).(){( dxdxxxpmXmXmXmXE lklk    (1.61) 

6. Covariance: k=l=1 
jijijjiiij mmxxEmXmXE −=−−= }{)}).({(μ       (1.62) 

 
7. Characteristic Function (Moment Generating Function): 

∫
∞

∞−

==Φ dxxpeeEs X
sxsx

X )(.}{)(    where s is a complex variable.   (1.63) 

8. Properties: 

x
s

X mXE
s

s
==

∂
Φ∂

=

}{)(

0
    and      }{)( 2

0
2

2
XE

s
s

s

X =
∂
Φ∂

=

   (1.64) 

 
Example 1.13: Uniform Random Variables: 

⎪⎩

⎪
⎨
⎧ ≤≤

−=
otherwise

bxaif
abxpX

0

1
)(       (1.65) 

2)(22
.11}{

222 ab
ab

abt
ab

tdt
ab

XE
b

a

b

a

+
=

−
−

=
−

=
−

= ∫  

 

3)(33
.11}{

22333
22 aabb

ab
abt

ab
dtt

ab
XE

b

a

b

a

++
=

−
−

=
−

=
−

= ∫  

and the variance is simply: 

  
12

)(}){(}{
2

222 abXEXEx
−

=−=σ  

Finally, it can be shown that: 

  
)(

)(
abjw

ees
jwajwb

X −
−

=Φ  

Example 1.14: Gaussian Random Variables: 

  
22 2/)(

2
1)( σ

πσ
xmx

X exp −−=        (1.66) 

where: meanmX ==μ  and and the cdf is given by: iancevar2 =σ

These notes are © Huseyin Abut, February 2004 



 16

 duexXobxF
x

mu
X

x .
2

1)(Pr)(
22 2/)(∫

∞−

−−=≤= σ

πσ
     (1.67) 

9. If the r.v. has  zero-mean,  and  unity variance, , we have the Standard Gaussian 
(or normal) distribution of N(0,1) and 

0=xm 12 =σ

2/2

2
1)( x

X exp −=
π

         (1.68) 

and duexFxXobxQ
x

u
X .

2
1)(1)(Pr)( 2/2

∫
∞

−=−=>=
π

     (1.69) 

which is both tabulated and plotted in many communication texts and handbooks. It is worth 
noting that the above expression holds for a generic Gaussian r.v. 

)()(1)(Pr
σ

mxQxFxXob X
−

=−=>        (1.70) 

2
)(log

22smssXe
σ

+=Φ    

with properties: 

1. )]
2

(1[
2
1)( xerfxQ −≡  

2.  2/2
)( xexQ −≤

 
Central Limit Theorem: 
• Let  be a set of N independent identically distributed r.v. (i.i.d.) with pdf: 

 and a finite variance .  

}1;{ Niforxi ≤≤

)()( xpxp Xxi
= 2σ

• ∑
=

≡
N

i
ix

N
Z

1

1           (1.71) 

• It can be shown that cdf of Z approaches to a cdf of a Gaussian r.v. as . ∞→N
• Equivalently, each r.v.  represents a random event and Z is the cumulative effect of these 
events then cdf of this new r.v. approaches that of a Gaussian r.v. regardless of the cdf of each . 

ix

ix
(a) It can be shown that if  are i.i.d. Gaussian with the same mean and variance then ix

NN xaxaxaZ +++= ...2211         (1.72) 
is a Gaussian r.v. with zero mean 0}{ =ZE   and a variance: 
        (1.73) )...()( 22

2
2
1

22
Nz aaaZVar +++== σσ

(b) Two r.v. with  and  are jointly Gaussian with a pdf: 0}(}{ == YEXE 222 σσσ == yx

}
)1(2

2exp{
12

1),( 22

22

22, ρσ
ρ

ρπσ −
+−

−
−

=
yxyxyxp YX      (1.74) 

where the correlation coefficient is given by: 2
}{
σ

ρ XYE≡  and  11 ≤≤− ρ . 

(c) If X and Y have  then they are Uncorrelated. 0}{ =XYE
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• If a vector X  has elements which are zero-mean, independent and jointly Gaussian with the 
same variance then their joint pdf is given by the general Gaussian formula: 

}
2

exp{
)2(

1)( 2

2

2/ σσπ
x

xp MMX −=        (1.75) 

where M is the dimension of the random vector X . 
 
 

1.5 Stochastic (Random) Processes 
 If the random variable is a time-dependent function, that is, it is changing with time then 
we have a random (stochastic) process defined by a random function: ),( ξtx , where t is the 
ordinary time variable.  
1. The graph of ),( ξtx  for a fixed experimental outcome ξ=Θ  is called a realization, such as, 

the received signal envelope in a binary PAM system: 
 

 
2. For each fixed time , the set of values kt ),( ξktx  is a r.v. Indexed family of r.v. form the 

stochastic process . )(tX
3. If the time index set is discrete then we have a discrete-time random process. If the index is 

continuous then we have a continuous-time random process. 
 
Example 1.15: Amplitude and phase modulated signals: 
(a) AM: If ],[ VV−∈ξ  Volts is changing wrt a pdf and )2(),( tCostx πξξ = . 
(b) PM: If  ],[ ππξ −∈  is normally uniformly distributed and )2(),( ξπξ += tCostx . 
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• Mean Function:  In general, it is a function of time defined by: 

∫
∞

∞−

== dxxxptXEtm tXx )()}({)( )(         (1.76) 

• Autocorrelation function: 

∫ ∫
∞

∞−

∞

∞−

== 2121)()(212121 ),()}().({),(
21

dxdxxxpxxtXtXEttR tXtXx     (1.77) 

• Autocovariance function: 
)().(),()]}()()].[()({[),( 2121221121 tmtmttRtmtXtmtXEttC xxxxxX −=−−=   (1.78) 

• Variance function: 
),(})]()({[ 22

)( ttCtmtXE XxtX =−=σ        (1.79) 
 
Gaussian Process: 
Let  )}(),...,(),({)( 21 ntXtXtXtX =  be a process, where the elements of )(tX  are jointly Gaussian 
for every finite set of time indices, and then )(tX is a Gaussian Process. 
1. The joint pdf depends on the means: 

],...,,[}{ 21 nX xxxXEm ==  
2. and the set covariances: 
 jijijjii xxxxExxxxE .}{)}).({( −=−−=λ       (1.80) 
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Random Processes

Wide-Sense R.P.

Strictly Stationary Processes

Ergodic Processes

• A process is strictly stationary if its nature of randomness stays unchanged with time 
(independent of time origin.) In other words, its joint pdf is independent of time shifts. This 
constraint is fairly difficult to meet in many real-life applications.  

• A process is wide-sense (weakly) stationary if its mean and autocorrelations are 
independent of the actual time index. 

1. mtmx =)(  

2.  for discrete processes }.{)( ∗
+= kkx XXER ττ

 and  for continuous processes. )}().({)( tXtXERx
∗+= ττ

 
Properties: 
1. Power of a zero-mean process: 

}{)0( 2
kx XER =  for discrete and   })({)0( 2tXERx =     (1.81) 

2. Power Spectral Density (PSD) is the Fourier transform of the autocorrelation function: )(τxR  

τττ τdeRRFwS jw
xxx ∫

∞

∞−

−== )()}({)(        (1.82) 

3. Power is the total area under the power density curve: 

∫
∞

∞−

= dwwSR xx )(
2
1)0(
π

        (1.83) 

4. All strictly stationary processes are also wide-sense stationary. But the converse is not always 
true. 

5. If the signal is Gaussian distributed then wide-sense stationarity implies strict-sense 
stationarity. 
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• If the ensemble (statistical) averages of all orders of a stationary process are equal to the time-
averages of the same process then this process is ergodic.  

)}({])(1[lim)( txEdttx
T

tx
T

T
== ∫ℵ→

 and  }{ PP xEx =      (1.84) 

where P is the order of the statistics. 
 

1.6 Statistics of Linear System Responses 

 
Consider a linear system with an impulse response )(th  and a frequency response : )( jwH
 
Fundamental Relationship: Convolution in time-domain: 

     (1.85) ∫∫
∞

∞−

∞

∞−

+=−=∗= ττττττ dthxdtxhthtxty )().()().()()()(

Multiplication in frequency-domain: )().()( jwHjwXjwY =     (1.86) 
If  is stationary then: )(tx

1.      (1.87) )0()()}({)(}{ HmdhmdtxEhyEm xxy ==−== ∫ ∫
∞

∞−

∞

∞−

τττττ

Output mean is the input mean times the frequency response at D.C. 
2. 2)().()( jwHjwSjwS xy =         (1.88) 

 
Output power spectral density is the input times the magnitude-square of the system frequency 

response.  Thus, no need to compute the output statistics at all; they are available from input 
statistics. 

 
1.6 Additive Gaussian White Noise and Bandlimited White Noise 
  

As discussed earlier, additive noise channel model is normally used as the channel model 
in communication systems because of its simplicity, maybe more critically, its mathematical 
tractability.  

           (1.89) )()()( tntxty w+=
where the noise term  is a zero-mean Gaussian process, with a constant power spectral 
density and an impulsive autocorrelation function: 

)(tnw

    and   wallforNjwSn 0)( = )()( τδτ =nR       (1.90) 

Response

x(t)

X(jw)                                                            Y(jw)

y(t)

 

      h(t); H(jw)

System Impulse ResponseInput signal
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If the PSD is constant over a finite bandwidth then it is called a colored (pink) or bandlimited 
white noise as in the case of Thermal Noise.  

 
Example 1.16: Thermal Noise with bandwidth:    .1012 HzW =
 

It is worth noting that: 

⎩
⎨
⎧ ≤≤−

=
otherwise

WwWifN
jwSn 0

222/
)( 0 ππ

   and   
Bt

BtSinBRx
)(.)(

π
τ =  

• If x(t) is sampled at a rate B/π  then the samples will have Z.C. at these sampling points and 
the sampled (discrete-time) white Gaussian noise will have "UNCORRELATED" samples: 

0......)/2()/( === BRBR yy ππ       (1.91) 
• If the noise is bandlimited as in thermal noise then the samples will be given by: 

∑
∞

−∞=

−=
m

m mTthxty )()(         (1.92) 

where sampling period: BT /π=  and  are the samples of white noise. Last equation is also 
known as the Pulse Amplitude Modulation (PAM) formula and hence, this type of sampling is 
called PAM sampling. 

mx
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