1. INTRODUCTION

Volume of data transmission for the users of personal communications and Personal computer
systems is growing unbounded, even to the extend of bringing the service providers to a complete
stall.
World-wide-web facilities have opened the eyes of millions of users to be more demanding on
everything they interface with in their daily lives.
Increasing demand for

high quality digital telephony,

digital TV, and

multi- media communications over advanced networks prompted numerous studies in the area of

digital communications.
Primary objective of this course is to broaden general and working knowledge of engineers and
scientist in the area of modern techniques on emerging digital communication systems and in their
implementations.
This course is designed for engineers and researchers involved in al fields of digital communications
and signal processing including: signal processing and data compression, video coding in multimedia
applications, telecommunication systems and services, defense and manufacturing.

1.1 Communication System Models
Generic Digital Communication Systems and Associated Signals:
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Messages are normally discrete and finite; but they could be very large in quantity.
m={m;;i =12,..} (1.1)

There is a particular signal waveform generated and transmitted for each message M.
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s(t) ={s; (t);i =1,2,...} (1.2)

White or bandlimited channel noise, device noise, distortion due to digitization, compression,
etc., intersymbol interference, near and far end cross-talk, jammers are all generically lumped
into "NOISE": N(t).

Received signal is commonly represented as the sum of the transmitted signal (attenuated and

delayed in the channel but reconstructed back to the original in the front end) plus the additive
noise from all the ills mentioned above:

r(t) = s(t) +n(t) (13)
It can be one of many possible signal waveforms:
r(t) ={r;(t);j =12...} (1.4)

Some signals might be lost in the channel as in the case of an erasure channel, or foreign

signals might be picked up as in the case of ajammed channel . Therefore, it is not necessary
that i=j.

Detected and decoded signal:

uit) ={u;(t); j =12,..} (15)
Reconstructed message:

m={m;;j=12..} (1.6)

TASK: Design a communication system with the property that transmitted
signal m; isreceived without error:

m, =m @.7)
Shannon's Point-to-Point Digital Communication Systems Model:

Source | Channel
Input Encoder Input | Encoder
Message Signal
Channel
Noise &
Distortion
Received
Output Output Corrupt
Message Source Message | channel Signal
Decoder Decoder
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Sour ce: Set of Symbols generated by a person or a system to be sent over atransmission
medium to a user. Examples:
- Speech/audio
Image/video
Telemetry and other sensor data
Computer data

Sour ce Encoder : Messages from users are highly redundant. Compression of redundancy in
a systematic manner is called source encoding. Examples:

CELP coding for speech/audio signals.

JPEG coding for till images.

Lempel-Ziv universal lossless coding for text compression.

Channél Encoder: Coding for improved transmission over physical medium. Examples:
Run-length line coding
Convolutional codes
QAM, FSK, DPSK, QPSK, and other codes for data transmission.

In many cases two are combined and called Encoder and described by: What designer gets
to do to signal before sending it over the channel. It can include:
- Preprocessing,
Sampling and A/D conversion,
Signal decompositions,
Modulation, and
Compression.

Goal: Prepare signal for channel in a way decoder can recover good reproduction.

Channdl: Physica medium for communication process. This portion of communication
system is out of designer's control. It is often described in terms of a conditiona probability
distribution and a linear filtering operation. It could be: Deterministic or Random. Examples:
On-line media:
Null (transparent) channel
Air/deep space
Telephore lines, twisted-pair/coaxia cable (POTS).
Ethernet
Fiber-optic link
Off-line media
CD
Magnetic tape/Magnetic disk
Computer memory
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Channeél and Source Decoders. They attempt to perform inverse operations of the
source encoder and the channel encoder, respectively. The combination is called as the Decoder
and described by: What decoder gets to do to channel output in order to reconstruct or render a

version of the signa for the user. It can include inverses or approximate inverses of encoder
operations, or other stuff to enhance reproduction.

Distortion and NOiISe: When the continuous or analog signals are digitized and
compressed there is aways a cost associated with the process. In digitization of band-limited
signals, we employ Nyquist Theorem to guarantee exact reconstruction. However, any other
source compression is realized at a cost of varying degree of imperfect representation. This is
called distortion and it is NOT recoverable. In addition, signals in the communication link are
faced with number of ills. They are loosely called noise.

The presence of noise on a signal changes it shape and characteristics and it limits the
ability of the intended receiver to make correct symbol decisions, and thereby the effects the rate
of reliable communication. Examples:

- Additive Gaussian White Noise.
Device noise.
Atmospheric noise in the microwave channels
Intersymbol interference in data communication systems
Interspeaker interference in voice communications
Near-end and Far-end crosstalk and Echoes in Link and chamber
Friendly and unfriendly jammers, etc.

User: The intended user of the input informationbearing messages, usualy a replica of the
original input messages. The messages coming to user may not need an identica replica of the

sender’s information symbols. A good example would be access control of a safe room by the
voice print of intended user.

1.2 Review of Probability Theory
Underlying assumption in communication |f the intended user knew what the
source message was there is no need to communicate.

Real-life scenario: Transmitter is connected to a random source; channel is corrupted also in a
random manner; and the receiver cannot predict a transmitted message with certainty.

Example 1.1: Consider a Binary Symmetric Channel (BSC) with a bit-error-rate (BER) of e,
where a binary source sends { 1,0} with probability {p, 1-p}:

Sour ce Receiver
p(1)=p 1-e = 1 db=a
e
p(0)=1-p O 0 q(0)=1q
1-e
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If we transmit ASCII characters (7-bit+parity bit) over this BSC:
m={m;e(0);i =012,...,127} (18)
m = dyd,d3d,dsdgd and each digit is either 0 or 1.

Then we have a digit-by-digit binary transmission. Alternatively, if we rewrite (1.8) using
m :d1.2'1+d2.2'2+...+d7.2'7 (1.9)

We can use mary signaling levels as shown below and transmit only one specific waveform for
each message. This principle is now actively pursued in emerging communication systems with

multi-level signaling.
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Example 1.2: Radio Communication problem.

Signals from the transmitting antenna are reflected from (and refracted by) various layers of
the ionosphere and scattered. This constitutes a "Diversity Channel," and the signals picked up by
the receiving antenna are multi-path scattered signals from the genuine source as well as all other
sources operating at the same frequency band, which are labeled as friendly and unfriendly
jammers. Reception possibility and the quality are governed by a set of statistical measurements
performed on incoming signals.

An experiment is random when the conditions of measurements are not predetermined with
sufficient accuracy and completeness to permit a "precise” prediction of a random trial, such
as, digit-by-digit transmission of binary symbols over aBSC.

Outcomes. Measured quantities from an experiment, such as amplitude and phase
characteristics of incoming signals in aradio receiver.

Results: Set of outcomes between which we choose to distinguish, such as AM signals only in
anarrow-band of interest.

Sample Space: S. Set of all possible outcomes of an experiment.
Event: A ={W: Outcomes such that some condition on W is satisfied} (1.10)

Kolmogorov's Probability Axioms:
1. Toevery event A; aunique number P(A)) is assigned such that:

OEP(A)EL (1.12)
2. P(S) =1 (112)
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3. If Aand B are mutually exclusive; thatis, AC B =f then

P(AE B) = P(A) + P(B) (1.13)
3A.1f A and B are not mutually exclusive; thatis, AC B 1 f then
P(AE B) = P(A) + P(B)- P(AC B) (1.14)

Compliment: A Compliment of A.
Unionevent: D =AE B
Total Probability: If all A| are mutually digoint then

PUA)=a P(A) (115)

Joint Probability: If the sample space is partitioned into events of to different sets, such as, the
amplitude and phase ranges of an incoming signal coming to aradio receiver, where

{A-;1=12..,n} ad {Bj =j=12,.,m

OFf P(A,Bj)f,l (1.16)
Marginal Probability: If Bj are mutually exclusive or disjoint then:
m
a P(A,Bj) =P(A) (117)
j=1
and
J . m
a{aP(A,Bj)} =1 (1.18)
i=1 j=1
Conditional Probability:
If P(B)>0 then P(A|B) = P(AB) (1.19)
P(B)
Ifboth P(A) >0 and P(B)>0 then:
P(A,B) =P(A|B).P(B) =P(B| A).P(A) (1.20)

Which is known as the Bayes Rule.

Example 1.3: Die Tossing Experiment.
S :{11213141516}
Le A={Odd outcomesg ={135. P(A)=1/2
a  A={Even_outcomes} ={2,46} P(A)=1/2

b)  If anew event isdefined as small facevalues B ={1,2,3 and
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D=AUBten P(D)=P({1235)=4/6.
Because:

P(D) = P(A) + P(B) - P(AC B) =1/2+1/2- P{13})=1- 1/3=2/3

C) Given that the outcome was small what is the probability that it was odd?
P(Odd, Small) _ 2/6

P = ey 12 Y
Bayes Theorem: If { A =1 =1,2,..., N} aredigoint then OA = Sand P(B) > 0 then
i=1
P(A |B) = P(A,B) _ P(B|A)-P(A) w2

"B dr@iA)PM)

i=1
Example 1.4: Communication over a noisy channel.

A B

—  w»| Channd — »

Lost ——
message7 r\l\ Noise

P (A ): Apriori probabilities of input events (Designer's Problem.)

10

P(A | B): Aposteriori probability of A conditioned on having observed the received signal B

to be a particular outcome. (Optimum communication task of areceiver!).

Statistical Independence (Sl): If occurrences of A does not depend on occurrences of B then
P(A|B)=P(A) ad P(A B)=P(A).P(B) (1.22)
and A, B are called statistically independent.

Example 1.5: Die tossing experiment with: Odd: P(A) =1/2 and Small: P(B) =1/2
Probability of Odd & Small: P(A,B) = P({13)=1/3
P(A).P(B) =(1/2).(0/2) =1/ 4* 1/ 3. Therefore, A,Barenct Sl.

Example 1.6: Because of silences, voice communication is very inefficient on dedicated POTS
lines. Measurements show that "1/3" of the time actual speech goes through the line. This excess
capacity can be used (a) to increase the service by TASI or DSI type services to better utilize the
bandwidth or (b) to improve the performance in noisy channels. Given that each bit has a BER of
0.1% over a BSC and consecutive bits are SI what would be the bit rate if three bit-long sequences
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1

are sent for each bit? Assume that a majority rule decoder is used in the receiver to decide each
triplet.

Source Receiver
p(1)=0.5 1 999 1 q(1)=0.5
001
.001
p(0)=0.5 O 0 g(0)=0.5
.999
Solution:

Symbols are incorrect when 2 or 3 out of three bits are in error. If we assume P=1/2 then

Total BER = 2{(1/2).[3.(0.001)?.(0.999) + (0.001)%.(0.999)°]} » 3.10°°

We have traded-off rate (1/3) for a significantly reduced BER. This simple rule has been used in
classical computer memory storage algorithms.

1.3 Random Variables

Means of associating real variables with random experiments and their outcomes.

-

Example 1.7: Coin tossing experiment with a Sample Space: S ={H, T}
Let us define a binary assignment function to the outcomes of each toss:

il if s=H
X(s)=i,. .
10 if s=T

Example 1.8: Voltage readi ng across a load:
SampleSpaces S=A and X(S)=V

Probability Notations: Given a continuous random variable: X, consider theevent X £ X,
we can represent the probability of this event in many ways:

P(X £X) =Pr(X £ x) =Prob(X £ x) (1.23)
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Cumulative Distribution Function (cdf):

F(X)=P(XEX) for -¥<x<¥ (1.24)
Properties of cdf:
1. O£EF(X)EL (1.25)
2. F(-¥)=0 and F(¥)=1 (1.26)
Probability Density Function (pdf):
dF (x X0
x(00=p(9 =) and F() = op0oax 0z
-¥

If ar.v. isdiscrete or mixed type, the discrete portion is normally represented by probability
mass functions (pmf):

P(X£x)=a p(x)d(x- x) (1.28)
i=1
If - ¥ <X <Xy <¥
then P(X £X5) =P(X £X)+P(x <X £X5) (1.29)
or equivalently:
F(Xz) = F(Xl) + PI‘Ob(Xl <XE X2) (2.30)
and
X2
Prob(x; < X £ X5) = F(X5) - F(X) = dpy (X)dx (1.31)
%

Multiple Random Variables

Consider an experiment with a sample space S and the outcomes are mapped by two
different functions, such as an AM receiver, where each received waveform has random amplitude
and a random phase value.

N

X1
T Rxl

P

\\\\\
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Joint Cumulative distribution function:

F(x,%2) = P(Xy £ %, X2 £ %) =

X
OP(uy, U5 )du; du,
¥

K O =X

Joint probability density function:

T1°F (%, X2)
%1715

P(xq, X2) =

Marginal pdfs:

¥
P(X1) = OP(Xq, Xp)dX;

-¥

Properties:
¥ ¥

1L F(¥,¥)= 0 oP(x, Xo)dxdx; =1

-¥-¥

2. F(-¥,-¥)=F(-¥,X%)=F(X,-¥)=0
Conditional probabilities:

F (X, X e
TPOwX) S, xp)du

fix2 -y
P(X1E£X | X5 =X3)° F(X | %) = =
(X1 £ X [ X2 =%5) © F(x | %) TF (%) o(%,)
M5
and p(x1|x2):M it p(X,) >0 for all valuesof x,.
P(X2)

Revisit Bayes Theorem:

P(Xq, X2) = P(Xq | X2).P(X2) = P(X2 | Xq)-p(X1)

For multiple dimensions of order n:

TF (X0, X0 10y X))
%1 I1%5 ... 91X,

P(X1s X5 ey Xy ) =

then:

P(X1 s X5 yeeey Xy ) = P(Xq 4oy Xie | Xictdreeer Xy )- P(Xig 500 X))
If the multipler.v. are statistically independent:

F (X1, X5,y X)) = F(X).F(X2)...F(Xy)
P(X1, X2 1oy Xp) = P(Xq)- P(X2)--- P(Xp)
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Functions of Random Variables
Typical Question: If 'Y = g(X) isanew r.v. obtained operating on X, can we compute

statisticsof Y from those of X?

Example 1.9: Linear functions, such as linear filtering or prediction operations.
If 2> 0 and constant and Y=aX+ b then

R (y)=P(Y£y)=P@X +b£y)=P(X £L> by (L.44)
a
Example 1.10: Quadratic functions:

R ()= PYE ) = P(@X? +b) £ y) = P(X| € || L0) (1.45)

Fy (¥) = Fx (1/ Yo B Fy (- 1/ Y- b (1.46)

andsince Xpp =%, f are solutions of our quadratic equation we have:
a

Py (x1) + Px (%)

2a%,  2a(- Xy)
In general, if there are nreal rootsof Y = g(X) then the fundamental theorem of pdif
transformations states that:

(1.47)

py (Y) =

n
py (y) = é |gF‘)(X §|X') where |g((x)|X:)ﬁ is the derivative of g(X) at x=x (1.48)
Ny
and
Py (Y1, Y2:4Yn) = Px (X4 = 011Xz = 02" 1vensXn = G )| (149)
where X; = gi'l isthe i solutionof Y = g(X) equation and the Jacobian is given by:
-1
eﬂg 9, 3
8 '”Y1 'HY1 (
J=@é : : U (1.50)
Mgt ﬂg'lu
g¥n a6
Example 1.11: Linear Predictive Coding (LPC) with constant coefficients:
n
Y = AX or y= é_ a.inj for | :1,2,...,N (1.51)
=1

Assume Ais nonsingular thenwehave X = A° Ly with solutions:
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n
xi=abyy; for i=12..n and {b;} aethecementsof A"

=1
Since the system is linear we have:
J=_ = det(A’)
det( A)
and the pdf of the output is:
_ 1
Py (Yi: Youees Yn) = Py (X5 Xo sy xn).m

1.4 Statistical Averages & Characteristic Functions
The generic formulafor the computation of statistical (ensemble) averagesis given by:

¥
E{X"} = ox" px (x)dx

-¥
1. Mean or Ensemble Average (not time average) : N=1
E{X)=m, =m,
¥
2. 1Y = g(X) then E{Y} = E{g(X)} = 09(X) px (X)dx
-¥

¥
3. Mean SquareValue: If Y = X 2 then E{XZ} = (‘)Xz.px (X)dx
-¥

4. Central Moments: It isthe casefor: Y = (X - m,)"

¥
E{Y} = E{(X - m)"} = &(x- m)".px (x)dx
-¥

4. Varianceissimply the case for N=2:

s f =E{(X- m)?%} = ¥o(x- my)* Py (X)dx
¥

(1.52)

(153)

(154)

(1.55)

(1.56)

(157)

(1.58)

(1.59)

15

It is worth noting that the computation of variance in (1.59) requires a two-pass procedure
to compute the mean first and then the variance. However, it can be shown from the superposition

theorem that:
s § =E{X%}- (E{X})* =E{X?}- m}

which is asingle pass operation.

5. Other moments:
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¥ ¥
E{(X1- m) .(X5- mp)'} = & &o(Xq- m) (X5 - my)'.p(xg, %o )dxydx;
-¥ -¥

(161)
6. Covariance k=1=1
M = E{(X; - my).(Xj - my)} = E{xx;}- mm; (1.62)

7. Characteristic Function (Moment Generating Function):
¥

F «(S) = E{e¥} = &¥.py (X)dX wheresisacomplex variable.  (1.63)
_¥
8. Properties:
2
F « (s
TS gy o TEXO

=E{X 2} (1.64)
s |e=o s’

s=0

Example 1.13: Uniform Random Variables:

.}1 .
px(X):l'—b-a If aEXED (165)

f 0 otherwise

_b%?-a%? b+a
T 2b-a) 2

1 b
E{X} =— §dt =——— —
b-a,

_b3-a®> _ b?+ab+a?
_3b-a) 3

2 10,
E(X %) = gt =
a

and the variance is smply:

2 _ epy 2y > _(b- a)°
sx =E{X7}- (E{X})” = B

Finally, it can be shown that:
ej\/\/o _ ejwa
Fx(8)=—
jwb- a)

Example 1.14: Gaussian Random Variables:

(v 219 2
e(x my)</2s

(1.66)

(X):L
Px0= ST

wheree m=m, =mean and S 2 = var ianceand the cdf is given by:
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X 2/9c 2
Fy (X) = Prob(X £ x) -1 o (U m)T/2s T g (167)
SV y

9. If the rv. has zero-mean, My =0 and unity variance, S 2 =1, we have the Standard
Gaussian (or normal) distribution of N(0,1) and

px(x):%me-XZIZ
ad  Q(X) =Prob(X >x) =1- Fy(X) =

(1.68)

¥
1 O w12 gy (1.69)

V2p

which is both tabulated and plotted in many communication texts and handbooks. It is worth
noting that the above expression holds for a generic Gaussian r.v.

Prob(X >x) =1- Fy (x) = QD) (170
S
282
0. F x (8) = ms+ >

with properties:

L QX)° %[1- et (]

2. Q(X) Ee K12

Central Limit Theorem:
Let {X;; for LE 1 £ N} be aset of N independent identically distributed r.v. (i.i.d.) with

pdf: Py, (X) = Px (X) and afinite variance S 2

o 1 M
Z° —ax (1.72)
N =
It can be shown that cdf of Z approaches to a cdf of aGaussianrv.as N ® ¥ .
Equivalently, each r.v. X; represents a random event and Z is the cumulative effect of these

events then cdf of this new r.v. approaches that of a Gaussian r.v. regardless of the cdf of eachXX; .

(@) Itcanbeshownthat if X; arei.i.d. Gaussian with the same mean and variance then

/= Y X taorXy ... +anyXy 2.72
isaGaussian r.v. with zero mean E{Z} =0 and avariance:
Var(Z) =s 2 =s *(af +as +...+ay) (173)
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(o) Tworv. with E{X} = E(Y} =0 and S § =S § =S ° arejointly Gaussian with a pof:
1 X2 - 2rxy +y?
Px,y(XY) = exp{ - }
2ps 24[1- r 2 > %(1-1?)
where the correlation coefficient isgiven by: ' © E{ Xsz ad - 1£r £1.
S

(1.74)

© If Xand Y have E{ XY} = O then they are Uncorrelated.

If avector X has elements which are zero- mean, independent and jointly Gaussian with the
same variance then their joint pdf is given by the general Gaussian formula:

1 I4°
exp( - 19 175
(2p)M 725 M o o 2 (L.79)

where M is the dimension of the random vector X .

P x (X) =

1.5 Stochastic (Random) Processes

If the random variable is a time-dependent function, that is, it is changing with time then
we have a random (stochastic) process defined by a random function: X(t,X), where t is the
ordinary time variable.

1. Thegraphof X(t,X) for a fixed experimental outcome Q =X is called a realization, such
as, the received signal envelope in abinary PAM system:

X(!',,-f:.:l X

_ M - .. - \_/ L ¢
L XG.Lo) -
‘—_\.‘ o~ i3 &) ’ Ik T

T _

X{!.ﬁ})

r
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2. For each fixed time ty, the set of values X(ty,X) isar.v. Indexed family of r.v. form the

stochastic process X (t).
3. If the time index set is discrete then we have a discrete-time random process. If the index is
continuous then we have a continuous-time random process.

Example 115 Amplitude and phase modulated signals:
@ AM:If X | [-V,V] Voltsis changing wrt apdf and X(t,X) =XCos(2pt).
() PM:1f X1 [-p,p] isnormally uniformly distributed and X(t,X) = Cos(2pt +X).

Mean Function: In generd, it isafunction of time defined by:

¥
my (t) = E{ X(t)} = P x(r) (X)dX (1.76)
-¥
Autocorrelation function:
¥ ¥
Ry(tr t2) = E{X(t1)- X(t2)} = & 0XaX2Px () x (1) (X0, X2)dXqdXz  (1.77)
-¥ -¥

Autocovariance function:

.Cx (t1,t2) = E{[X(ty) - my(t)].[X(t2) - my(to)]} = Re(ty,tn) - my(ty).my(ty)
(1.78)
Variance function:

s f = EL[X(1) - me(t)]°} =Cx (t,1) (179)
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Gaussian Process:
Lee X (t) ={X(t;), X(t5),..., X(t,)} be a process, where the dements of X (t) are
jointly Gaussian for every finite set of timeindices, and then X (t)isaGaussian Process.
1. Thejoint pdf depends on t_he means.
My = E{ X} = [Xl’ X9 yueey Xn]
2. and the set covariances:
I =E{(% - %)(x; - X))} = E{xX;} - XX (1.80)

o~ )

Ergodic Proceses

Strictly Sationary Processes

NVideSm==RP.
Random Pr 00es%S

A process is Strictly stationary if its nature of randomness stays unchanged with time

(independent of time origin.) In other words, its joint pdf is independent of time shifts. This
constraint is fairly difficult to meet in many real-life applications.

A process is wide-sense (weakly) stationary if its mean and autocorrelations are
independent of the actual time index.

1. m, (t) =m
2. R () = E{ X4 X;} for discrete processes
and R (t) = E{ X (t +t ).X* (t)} for continuous processes.

Properties:
1. Power of azero-mean process.
R, (0) = E{|X, |’} for discreteand R, (0) = E{|X (t)|"} (181)

2. Power Spectral Density (PSD) is the Fourier transform of the autocorrelation function: RX (t )
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¥ .
Se(W) = F{R,(t)} = oR.(t)e " dt (1.82)
3. Power isthe total area under the-power density curve:

¥
R, (0) = 2% SSX (w)dw (1.83)

4. All drictly stationary processes are also wide-sense stationary. But the converse is not always

true.

5. If the signa is Gaussian distributed then wide-sense stationarity implies strict-sense

stationarity.

If the ensemble (statistical) averages of all orders of a stationary process are equal to the time-

averages of the same process then this process is ergodl C.
X(t) = Iim[— OX()dt] = E{x(t)} and xT = E{x"} (1.84)
TRAT
where P isthe order of the statistics.

1.6 Statistics of Linear System Responses

X(t) I ()

Inout sional em Impulse Response

nput Ign > il i) Respons:
X(w) Y(w)

Consider alinear system with an impulse response h(t) and a frequency response H (jw):

Fundamental Relationship: Convolution in time-domain:

y(t) = x(t)* h(t) = d’](t ).x(t-t)dt = t)X(t ).h(t +t )dt (1.85)
Multiplication mfrequency—domaln Y(jw) = X(jW) H(jw) (1.86)

If X(t) is stationary then:

L my =E{y} = f‘)h(t YE{X(t-t)}dt =m, %h(t )dt =mH(©) (187

Output mean is the input mean times the frequency response at D.C.
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2. Sy (jw) = S(jw)|H (jw)|° 129

Output power spectral density is the input times the magnitude-square of the system frequency
response. Thus, no need to compute the output statistics at all; they are available from input
statistics.

1.6 Additive Gaussian White Noise and Bandlimited White Noise

As discussed earlier, additive noise channel model is normally used as the channel model
in communication systems because of its smplicity, maybe more criticaly, its mathematical
tractability.

y(t) = x(t) +ny (1) (1.89)
where the noise term nW(t) is a zero-mean Gaussian process, with a constant power spectral
density and an impulsive autocorrelation function:

S (jw) =Ny forallw and R, (t)=d(t) (1.90)

If the PSD is constant over a finite bandwidth then it is called a colored (pink) or bandlimited
white noise asin the case of Thermal Noise

Example 1.16: Thermal Noise with bandwidth: W =10 Hz.

Sx(f)‘r
Ng/2
B - —w w F
(a)
Ry (1)
NoW
! f— P J >
—4 -3 -2 —1 0o 1 2 3 4 T
W W 2w W W 2W 2w 2w

It is worth noting that:
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. iNg/2 if - 20W £ w£ 2pW B Sin(Bt
S (iw=| ° | it R(t) = > 3B
i 0 otherwise p Bt

If x(t) issampled at arate P / B then the samples will have Z.C. at these sampling points and
the sampled (discrete-time) white Gaussian noise will have "UNCORRELATED" samples:

R,(p/B) =R, (2 /B)=....= 0

(2.92)
If the noise is bandlimited as in thermal noise then the samples will be given by:
¥
y(t) = & xyh(t- mr) (1.92)
m=- ¥

where sampling period: T = / B and Xm are the samples of white noise. Last equation is also
known as the Pulse Amplitude Modulation (PAM) formula and hence, this type of sampling is
caled PAM sampling.
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