Chapter 7: Analysis and Processing of Random Signals

Power Spectral Density (PSD) for Continuous-Time Random Processes:

Let X(t) be a continuous-time WSS random process with mean m_X and an autocorrelation function: $R_X(\tau)$ The Fourier transform gives:

$$S_X(f) = F\{R_X(\tau)\} = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau$$

Remember that the autocorrelation function is an even function of τ :

$$R_X\left(\tau\right) = R_X\left(-\tau\right)$$

Therefore,

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) \{\cos 2\pi f \tau - j \sin 2\pi f \tau\} d\tau = \int_{-\infty}^{\infty} R_X(\tau) \cos 2\pi f \tau d\tau$$

Since integral of even/odd function = 0: $S_X(f)$ is real-valued and an even function of f. Also, $S_X(f) \ge 0$ for all f

$$R_X(\tau) = F^{-1}\left\{S_X(f)\right\} = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f \tau} df$$

Average Power of X(t) across 1-ohm resistor:

$$E[X^{2}(t)] = R_{X}(0) = \int_{-\infty}^{\infty} S_{X}(f)e^{jo}df = \int_{-\infty}^{\infty} S_{X}(f)df$$

Since

$$C_X(\tau) = R_X(\tau) - m_X^2$$

$$S_X(f) = \Im \{ C_X(\tau) + m_X^2 \} = \Im \{ C_X(\tau) \} + m_X^2 \delta(f)$$

Cross-Power Spectral Density

$$S_{XY}(f) = F\{R_{XY}(\tau)\}$$
 where $R_{XY}(\tau) = E[X(t+\tau)Y(\tau)]$

Example: 7.1 Find Power Spectral Density of Random Telegraph Signal with the autocorrelation function: $R_X(\tau) = e^{-2\alpha|\tau|}$. The Fourier transform gives the PSD:

$$S_X(f) = \int_{-\infty}^{0} e^{2\alpha\tau} e^{-j2\pi f \tau} d\tau + \int_{0}^{\infty} e^{-2\alpha\tau} e^{-j2\pi f \tau} d\tau$$
$$= \frac{1}{2\alpha - j2\pi f} + \frac{1}{2\alpha + j2\pi f} = \frac{4\alpha}{4\alpha^2 + 4\pi^2 f^2}$$

Above figure shows Power Spectral Density for $\alpha = 1$ and $\alpha = 2$. Note that $\alpha = 2$ has a greater high-frequency content when compared with a smaller α .

Example: 7.2 Given: $X(t) = a \cos(2\pi f_0 t + \theta)$, θ uniformly distributed $(0,2\pi)$, find Power Spectral Density. From Ex: 6.7 we have the autocorrelation function:

$$R_X(\tau) = \frac{a^2}{2}\cos 2\pi f_0 \tau$$

and the Fourier transform gives:

$$S_X(f) = \frac{a^2}{2} F\{\cos 2\pi f_0 \tau\} = \frac{a^2}{4} \delta(f - f_0) + \frac{a^2}{4} \delta(f + f_0)$$

The signal has average power $R_X(0) = \frac{a^2}{2}$ where all of this power is localized at $\pm f_0$.

Example: 7.3 WSS White Noise in the frequency range: $-W \le f \le W$ White Noise band-limited in the frequency range: $-W \le f \le W$ Hz, i.e. colored (pink) noise. If w is very large then it is approximately white.

Average Power:
$$E[X^2(t)] = \int_{-W}^{W} \frac{N_0}{2} df = N_0 W$$

Autocorrelation:

$$R_X(\tau) = \frac{1}{2} N_0 \int_{-W}^{W} e^{j2\pi f \tau} df = \frac{1}{2} N_0 \frac{e^{-j2\pi W \tau} - e^{-j2\pi W \tau}}{-j2\pi \tau} = \frac{N_0 \sin(2\pi W \tau)}{2\pi \tau}$$

Note: X(t) and $X(t + \tau)$ are uncorrelated at $\tau = \pm k/2W$, k = 1, 2, ...

Power Spectral Density of White Noise W(t): $S_W(f) = \frac{N_0}{2}$ for all f.

As W $\to \infty$, we have: $R_W(\tau) = \frac{N_0}{2} \delta(\tau)$. If W(t) is Gaussian R. P., then W(t) is White Gaussian Noise, is discussed in Example: 6.38

Example: 7.5 Given: Y(t) = X(t-d) where d is constant delay and X(t) is WSS, compute the PSD function.

$$R_{YX}(\tau) = E[Y(t+\tau)X(t)] = E[X(t+\tau-d)X(t)] = R_X(\tau-d)$$

$$S_{YX}(f) = F\{R_X(\tau-d)\} = S_X(f)e^{-j2\pi f d}$$

$$= S_X(f)\cos(2\pi f d) - jS_X(f)\sin(2\pi f d)$$

$$R_Y(\tau) = E[Y(t+\tau)Y(t)] = E[X(t+\tau-d)X(t-d)] = R_X(\tau)$$

$$\Rightarrow S_Y(f) = F\{R_Y(\tau)\} = F\{R_X(\tau)\} = S_X(f)$$

Note: The result: $S_Y(f) = S_X(f)$ does not imply X(t) = Y(t).

Power Spectral Density for Discrete-Time Random Processes:

$$S_X(f) = F\{R_X(k)\} = \sum_{k=-\infty}^{\infty} R_X(k) e^{-j2\pi f k}$$

where $-1/2 \le f \le \frac{1}{2}$. This is due to $S_X(f)$ being periodic.

 $S_X(f) \ge 0$ and even function of f. $S_X(f) = S_X(f+1)$

$$R_X(k) = \Im^{-1}\{S_X(f)\} = \int_{-1/2}^{1/2} S_X(f) e^{j2\pi f k} df$$

Cross-Power Spectral Density: Assume that X_n, Y_n are jointly WSS

$$S_{XY}(f) = F\{R_{XY}(k)\}$$
 where $R_{XY}(k) = E[X_{n+k}Y_n]$

Example: 7.6 X_n uncorrelated r.v., zero mean, variance σ^2_X (White Noise Process). Find the PSD function: $S_X(f)$

$$R_X(k) = \begin{cases} \sigma_X^2 & k = 0\\ 0 & k \neq 0 \end{cases}$$

and

$$S_X(f) = \sum R_X(k) e^{-j2\pi f k} = \sum \delta(k) \sigma_X^2 e^{-j2\pi f k} = \sigma_X^2$$
 for $-1/2 < f \le 1/2$

Example 7.7: Given $Y_n = X_n + \alpha X_{n-1}$ Where X_n is white noise process of Ex. 7.6

$$\begin{split} E[Y_n] &= E[X_n] + \alpha E[X_{n-1}] = 0 \\ E[Y_n Y_{n+k}] &= E[(X_n + \alpha X_{n-1})(X_{n+k} + \alpha X_{n+k-1})] \\ &= \underbrace{E[X_n X_{n+k}]} + \underbrace{\alpha E[X_n X_{n+k-1}]} + \alpha E[X_{n-1} X_{n+k}] + \underbrace{\alpha^2 E[X_{n-1} X_{n+k-1}]}_{\alpha^2 \sigma_X^2 \quad k = 0} \\ 0 \quad k &= \pm 1 \qquad 0 \quad k = \pm 1 \\ 0 \quad o.w. \qquad 0 \quad o.w. \qquad 0 \quad o.w. \\ &= (1 + \alpha^2) \sigma_X^2 \quad k = 0 \end{split}$$

$$E[Y_n Y_{n+k}] = \begin{cases} (1+\alpha^2)\sigma_X^2 & k = 0\\ \alpha \sigma_X^2 & k = \pm 1\\ 0 & o.w. \end{cases}$$

$$S_Y(f) = F\{E[Y_n Y_{n+k}]\} = (1 + \alpha^2)\sigma_X^2 + \alpha\sigma_X^2 \{e^{j2\pi f} + e^{-j2\pi f}\}$$
$$= \sigma_X^2 \{(1 + \alpha^2) + 2\alpha\cos 2\pi f\}$$

Power Spectral Density as a Time Average:

Periodogram: Let $X_0, X_1, ..., X_{k-1}$ be k observations from a discrete-time WSS Process

$$\hat{x}_k(f) = \sum_{m=0}^{k-1} x_m e^{-j2\pi f m}$$
 DFT of X_k

Periodogram Estimate: $\hat{p}_k(f) = \frac{1}{k} |\hat{x}_k(f)|^2$

then it can be shown that $E\{\hat{p}_k(f)\} \rightarrow S_X(f)$ as $k \rightarrow \infty$

If X(t) is a continuous-time WSS process then $\hat{p}_T(f) = \frac{1}{T} |\hat{x}_T(f)|^2$

Where

$$\hat{x}_T(f) = \int x(t') e^{-j2\pi f t'} dt'$$

then it can be shown that

$$E\{\hat{p}_T(f)\} \rightarrow S_X(f) \text{ as } T \rightarrow \infty$$

Random Signals Through Linear Systems:

Let us recall that a system is linear if zero-in yields zero-out and if the superposition theorem holds:

$$T[\alpha x_1(t) + \beta x_2(t)] = \alpha T[x_1(t)] + \beta T[x_2(t)]$$

Similarly, a system is time-invariant if $x(t-\tau)$ yields $y(t-\tau)$, then

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} h(s)x(t-s)ds = \int_{-\infty}^{\infty} h(t-s)x(s)ds$$

where h(t) is the impulse response $h(t) = T[\delta(t)]$.

Transfer function or frequency response of the system:

$$H(f) = F\{h(t)\} = \int_{-\infty}^{\infty} h(t) e^{-2\pi f t} dt$$

A system is causal if the response at t depends only on past and present values of the input if h(t) = 0 for t < 0.

For random signal input X(t), then

$$Y(t) = \int_{-\infty}^{\infty} h(s)X(t-s)ds = \int_{-\infty}^{\infty} h(t-s)X(s)ds$$

If these integrals exist in the mean-square sense and if X(t) is WSS then Y(t) is also WSS.

$$m_Y = E[Y(t)] = E \begin{bmatrix} \int_{-\infty}^{\infty} h(s)X(t-s)ds \\ -\int_{-\infty}^{\infty} h(s)E[X(t-s)]ds \end{bmatrix}$$

since X(t) is WSS, then $m_X = E[X(t)] = E[X(t-s)]$.

$$m_Y = E[Y(t)] = m_X \int_{-\infty}^{\infty} h(\tau) d\tau = m_X \int_{-\infty}^{\infty} h(\tau) e^{-j2\pi f \tau(\tau=0)} d\tau = m_X H(0)$$

$$R_{Y}(\tau) = E[Y(t)Y(t+\tau)] = E\begin{bmatrix} \int_{-\infty}^{\infty} h(s)X(t-s)ds \int_{-\infty}^{\infty} h(r)X(t+\tau-r)dr \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(s)h(r)E[X(t-s)X(t+\tau-r)]dsdr = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(s)h(r)R_{X}(\tau+s-r)dsdr \\ S_{Y}(f) = F\{R_{Y}(\tau)\} = \int_{-\infty}^{\infty} R_{Y}(\tau)e^{-j2\pi f\tau}d\tau \\ = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(s)h(r)R_{X}(\tau+s-r)e^{-j2\pi f\tau}dsdrd\tau$$

Let $u = \tau + s - r$ and substitute above:

$$S_{Y}(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(s)h(r) R_{X}(u) e^{-j2\pi f(u-s+r)} ds dr du$$

$$= \int_{-\infty}^{\infty} h(s) e^{j2\pi f s} ds \int_{-\infty}^{\infty} h(r) e^{-j2\pi f r} dr \int_{-\infty}^{\infty} R_{X}(u) e^{-j2\pi f u} du$$

$$= H^{*}(f)H(f) S_{X}(f) = |H(f)|^{2} \cdot S_{X}(f)$$

Example: 7.9 Filtered White Noise: White noise as a signal with power spectral density (PSD) $S_X(f) = \frac{N_0}{2}$ is band-limited by a linear, time-invariant system with a frequency response: H(f). What is the power spectral density of Y(t)?

$$S_Y(f) = |H(f)|^2 \frac{N_0}{2}$$

Therefore, the transfer function determines the shape of the output power spectral density.

Example: 7.11 Given: Z(t) = X(t) + Y(t) X(t) and Y(t) independent r.v.'s with power spectral density Fig 7.6(a)

Low Pass Filter output:

$$S_W(f) = \underbrace{\left| H_{LP}(f) \right|^2}_{1} S_X(f) + \underbrace{\left| H_{LP}(f) \right|^2}_{0} S_Y(f) = S_X(f)$$

$$S_W(f) = S_X(f) \text{ but } W(t) \neq X(t)$$

We can show that W(t) = X(t) in the mean square sense.

Band Pass Filter output:

$$S_W(f) = \underbrace{\left| H_{BP}(f) \right|^2}_{0} S_X(f) + \underbrace{\left| H_{BP}(f) \right|^2}_{1} S_Y(f) = S_Y(f)$$

Example: 7.12 Random Telegraph Signal passed through an RC low-pass filter with a transfer function:

$$H(f) = \frac{\beta}{\beta + j2\pi f} \quad \text{where } \beta = 1/\text{RC is the time constant}$$

$$S_Y(f) = |H(f)|^2 S_X(f) = \left(\frac{\beta^2}{\beta^2 + 4\pi^2 f^2}\right) \underbrace{\left(\frac{4\alpha}{4\alpha^2 + 4\pi^2 f^2}\right)}_{from Ex:7.1}$$

$$= \frac{4\alpha\beta^2}{\beta^2 - 4\alpha^2} \left\{ \frac{1}{4\alpha^2 + 4\pi^2 f^2} - \frac{1}{\beta^2 + 4\pi^2 f^2} \right\}$$

and the inverse FT yields the autocorrelation function:

$$R_Y(\tau) = F^{-1}\{S_Y(f)\} = \frac{1}{\beta^2 - 4\alpha^2} \left\{ \beta^2 e^{-2\alpha|\tau|} - 2\alpha\beta e^{-2\beta|\tau|} \right\}$$

Discrete-Time Systems

If h_n is the response of a discrete LTI system to a unit-sample input, i.e.,

$$\delta_n = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

then the response will be:

$$Y_n = X_n * h_n = \sum_{j=-\infty}^{\infty} h_j X_{n-j} = \sum_{j=-\infty}^{\infty} X_j h_{n-j}$$

The transfer function or Frequency Response of the system is given by

$$H(f) = \sum_{i=-\infty}^{\infty} h_i \ e^{-j2\pi f i}$$

If X_n is a WSS process then Y_n is also WSS with mean

$$m_Y = m_X \sum_{j=-\infty}^{\infty} h_j = m_X H(0)$$

and then autocorrelation function

$$R_Y(k) = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} h_j h_i R_X(k+j-i)$$

and Power Spectral Density of Y_n

$$S_{\mathcal{X}}(f) = |H(f)|^2 S_{\mathcal{X}}(f)$$

Example: 7.14 First-order autoregressive process: $Y_n = \alpha Y_{n-1} + X_n$, where X_n is zero-mean white noise with average power σ_X^2 .

Unit-sample response

$$h_n = \begin{cases} 0 & n < 0 \\ 1 & n = 0 \\ \alpha^n & n > 0 \end{cases}$$

We need $|\alpha|$ < 1 for system to be stable from linear systems theory and the transfer function will be

$$H(f) = \sum_{n=0}^{\infty} \alpha^{n} e^{-j2\pi f n} = \frac{1}{1 - \alpha e^{-j2\pi f}}$$

$$S_{Y}(f) = |H(f)|^{2} S_{X}(f) = \frac{\sigma_{X}^{2}}{(1 - \alpha e^{-j2\pi f})(1 - \alpha e^{j2\pi f})}$$

$$= \frac{\sigma_{X}^{2}}{1 + \alpha^{2} + (\alpha e^{-j2\pi f} + \alpha e^{j2\pi f})} = \frac{\sigma_{X}^{2}}{1 + \alpha^{2} - 2\alpha \cos 2\pi f}$$

$$R_{Y}(k) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} h_{j} h_{i} \sigma_{X}^{2} \delta_{k+j-i} = \sigma_{X}^{2} \sum_{j=0}^{\infty} \alpha^{j} \alpha^{j+k} = \frac{\sigma_{X}^{2} \alpha^{k}}{1 - \alpha^{2}}$$

Example 7.15 Autoregressive Moving Average (ARMA) Process

$$Y_{n} = -\sum_{i=1}^{q} \alpha_{1} Y_{n-i} + \sum_{i'=0}^{p} \beta_{i'} W_{n-i'}$$

where W_n is a WSS, white noise input process. The transfer function is

$$H(f) = \frac{\sum_{i'=0}^{p} \beta_{j} e^{-j2\pi f i'}}{1 + \sum_{i=1}^{q} \alpha_{j} e^{-j2\pi f i}}$$

The power spectral density is

$$S_Y(f) = |H(f)|^2 \sigma_W^2$$

Special cases:

• Autoregressive (AR) Process is an ARMA process with

$$\beta_0=1;\ \beta_1=\beta_2=\cdots=\beta_p=0$$

• Moving Average (MA) process is an ARMA process with

$$\alpha_0 = 1$$
; $\alpha_1 = \alpha_2 = \cdots = \alpha_q = 0$

Amplitude Modulation (AM) of Random Signals

A(t): WSS random information signal with a power spectral density $S_A(f)$ (Baseband Signal) (Fig. 7.7a)

AM: $X(t) = A(t)\cos(2\pi f_C t + \theta)$ with $A(t) \& \theta$ independent of each other And θ uniformly distributed $(0, 2\pi)$

Autocorrelation:

$$R_{X}(\tau) = E[X(t+\tau)X(t)]$$

$$= E[A(t+\tau)\cos(2\pi f_{C}(t+\tau) + \theta)A(t)\cos(2\pi f_{C}t + \theta)]$$

$$= E[A(t+\tau)A(t)]E[\cos(2\pi f_{C}(t+\tau) + \theta)\cos(2\pi f_{C}t + \theta)]$$

$$= R_{A}(\tau)E\left[\frac{1}{2}\cos(2\pi f_{C}\tau) + \frac{1}{2}\cos(2\pi f_{C}(2t+\tau) + 2\theta)\right]$$

$$= \frac{1}{2}R_{A}(\tau)\cos(2\pi f_{C}\tau) \implies X(t) \text{ is also WSS}$$

$$S_{X}(f) = F\left\{\frac{1}{2}R_{A}(\tau)\cos(2\pi f_{C}\tau)\right\} = \frac{1}{4}S_{A}(f+f_{C}) + \frac{1}{4}S_{A}(f-f_{C})$$
(For Bandpass Signal see Figure 7.7b)

Demodulation:

Let LPF be a good LPF to pass $S_A(f)$ in $-w \le \beta < w$ But suppress $S_A(f+2f_C)$ and $S_A(f-2f_C)$ Then Y(t)=A(t) recovered information signal

Quadrature Amplitude Modulation (QAM)

$$X(t) = A(t)\cos(2\pi f_C t + \theta) + B(t)\sin(2\pi f_C t + \theta)$$

A(t), B(t): real-valued jointly WSS process and let

$$R_A(\tau) = R_B(\tau)$$

 $R_{BA}(\tau) = -R_{AB}(\tau)$
 $\Rightarrow S_A(f) = S_B(f)$
 $\Rightarrow S_{BA}(f)$
Real-valued with even spectra (Figure 7.9b)

Purely imaginary (Figure 7.9c)

It is shown that X(t) is WSS with

$$R_X(\tau) = R_A(\tau)\cos(2\pi f_C \tau) + R_{BA}(\tau)\sin(2\pi f_C \tau)$$

and

$$S_X(f) = \frac{1}{2} \left\{ S_A(f - f_C) + S_A(f + f_C) \right\} + \frac{1}{2i} \left\{ S_{BA}(f - f_C) - S_{BA}(f + f_C) \right\}$$

WSS White Noise can be filtered by such bandpass filters

Example: 7.16 Demodulation of signal corrupted by additive noise

$$Y(t) = A(t)\cos(2\pi f_C t + \theta) + N(t)$$

where N(t): Bandlimited white noise with power spectral density

$$S_N(f) = \begin{cases} \frac{N_0}{2} & |f \pm f_C| < W \\ 0 & o.w. \end{cases}$$

We now obtain SNR of the recovered signal

$$Y(t) = \left[A(t) + N_C(t) \right] \cos\left(2\pi f_C t + \theta\right) - N_S(t) \sin\left(2\pi f_C t + \theta\right)$$

Demodulate with $2\cos(2\pi f_C t + \theta)$

$$\begin{split} 2Y(t)\cos(2\pi f_C t + \theta) &= \left\{ A(t) + N_C(t) \right\} 2\cos^2(2\pi f_C t + \theta) - N_S(t) 2\cos(2\pi f_C t + \theta) \sin(2\pi f_C t + \theta) \\ &= \left\{ A(t) + N_C(t) \right\} \left(1 + \cos(4\pi f_C t + 2\theta) \right) - N_S(t) \sin(4\pi f_C t + 2\theta) \end{split}$$

After low-pass filtering, the recovered signal is $A(t) + N_C(t)$

The signal power and noise are

$$\sigma_{A}^{2} = \int_{-W}^{W} S_{A}(f) df$$

$$\sigma_{N_{C}}^{2} = \int_{-W}^{W} S_{N_{C}}(f) df = \int_{-W}^{W} \left(\frac{N_{0}}{2} + \frac{N_{0}}{2}\right) df = 2WN_{0}$$

and the SNR is simply:

$$SNR = \frac{\sigma_A^2}{2WN_0}$$

#7.3 Find Power Spectral Density, S_Y of $R_X(\tau)\cos(2\pi f_0\tau)$

$$S_{Y}(f) = F[R_{X}(\tau)\cos 2\pi f_{0}\tau]$$

$$= F\left[R_{X}(\tau)\left[\frac{e^{j2\pi f_{0}\tau} + e^{-j2\pi f_{0}\tau}}{2}\right]\right]$$

$$= \frac{1}{2}F[R_{X}(\tau)e^{j2\pi f_{0}\tau}] + \frac{1}{2}\Im[R_{X}(\tau)e^{-j2\pi f_{0}\tau}]$$

$$= \frac{1}{2}S_{X}(f - f_{0}) + \frac{1}{2}S_{X}(f + f_{0})$$

$$S_{X}(f) = F[R_{X}(\tau)].$$
where

- #7.8 X(t) and Y(t) are independent WSS r.p. with: Z(t) = X(t)Y(t)
- a) Show Z(t) is WSS

$$\begin{split} E[Z(t)] &= E[X(t)]E[Y(t)] = m_X m_Y \\ R_Z(t, t+\tau) &= E\big[X(t)X(t+\tau)Y(t)Y(t+\tau)\big] = E\big[X(t)X(t+\tau)\big]E\big[Y(t)Y(t+\tau)\big] \\ &= R_X(\tau)\,R_Y(\tau) = R_Z(\tau) \end{split}$$

Therefore, Z(t) is WSS

b) Find $R_Z(\tau)$ (shown above) and $S_Z(f)$ $S_Z(f) = \Im[R_Z(\tau)] = \Im[R_X(\tau)R_Y(\tau)] = S_X(f) * S_Y(f)$

#7.18 Y(t) is derivative of X(t), a bandlimited white noise process, Ex: 7.3

a) Find $S_Y(f)$ and $R_Y(\tau)$

$$S_{Y}(f) = |H(f)|^{2} S_{W}(f) = |j2\pi f|^{2} \frac{N_{0}}{2} = 2\pi^{2} f^{2} N_{0} \qquad f < W$$

$$R_{Y}(\tau) = \int_{-W}^{W} 2\pi^{2} f^{2} N_{0} e^{j2\pi f \tau} df = 2\pi^{2} N_{0} \left[e^{j2\pi f \tau} \frac{\left(-4\pi^{2} f^{2} \tau^{2} - 2j2\pi f \tau + 2 \right)}{(j2\pi \tau)^{3}} \right]_{-W}^{W}$$

$$= 2\pi^{2} N_{0} \cdot \left[e^{j2\pi W \tau} \frac{\left(2 - 4\pi^{2} W^{2} \tau^{2} - 4j\pi W \tau \right)}{-j8\pi^{3} \tau^{3}} - e^{-j2\pi W \tau} \frac{\left(2 - 4\pi^{2} W^{2} \tau^{2} + 4j\pi W \tau \right)}{-j8\pi^{3} \tau^{3}} \right]_{-W}^{W}$$

$$R_{Y}(\tau) = \frac{4\pi^{2} N_{0}}{8\pi^{3} \tau^{3}} \left[-\left(2 - 4\pi^{2} W^{2} \tau^{2}\right) \sin 2\pi W \tau + 4\pi W \tau \cos 2\pi W \tau \right]$$
$$= \frac{N_{0}}{\pi \tau^{3}} \left[2\pi W \tau \cos 2\pi W - \left(1 - 2\pi^{2} W^{2} \tau^{2}\right) \sin 2\pi W \tau \right]$$

b) What is the average power of the output?

$$R_Y(0) = \int_{-W}^{W} S_Y(f) df = \int_{-W}^{W} 2\pi^2 f^2 N_0 df = \frac{4\pi^2 N_0 W^3}{3}$$

#7.38 Random Telegraph Signal with transition rate α . Given $f_C = \alpha/\pi$ and $f_C = 10\alpha/\pi$. Plot the power spectral density:

$$S_X(f) = \frac{4\alpha}{4\alpha^2 + 4\pi^2 f^2}$$

$$S_Y(f) = \frac{1}{2} S_X(f + f_C) + \frac{1}{2} S_X(f - f_C)$$

$$= \frac{2\alpha}{4\alpha^2 + 4\pi^2 (f + f_C)^2} + \frac{2\alpha}{4\alpha^2 + 4\pi^2 (f - f_C)^2}$$

$$= \frac{2\alpha}{4\alpha^2 + (w + 2\pi f_C)^2} + \frac{2\alpha}{4\alpha^2 + (w - 2\pi f_C)^2}$$

where $w = 2\pi f$

