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Chapter 7: Analysis and Processing of Random Signals

Power Spectral Density (PSD) for Continuous-Time Random Processes:
Let X(t) be a continuous-time WSS random process with mean my and an
autocorrelation function: Ry (z) The Fourier transform gives:

sx (1) =F{Rx (1)} = [Rx (r)e 1277 dz

Remember that the autocorrelation function is an even function of t:
Rx (r) =Rx (-7)

Therefore,
Sy (f)= R ()lcos 247 — jsin 2 z)dz = [Ry () cos 2z

Since integral of even/odd function = 0: s (f) is real-valued and an even
function of f. Also, sy (f)>0 forall f

Ry ()= F Hsx ()= (s ()el2f
Average Power of X(t) across 1-ohm resistor:
E[X ()= Ry (0= Tsx (Deldf = sy (f)af

—00

Since
Cx (z) = Rx (r) —m¥
Sx () = Slox (7) +m2 = S{ey (1)} + m2 5(f)

Cross-Power Spectral Density
Sxv (f)=F{Rxv (1)} where Ryy () = E[X(t+2)Y (¢)]

Example: 7.1 Find Power Spectral Density of Random Telegraph
Signal with the autocorrelation function: Ry (r) =e 227, The Fourier
transform gives the PSD:
0 . © .
Sy (f): IeZaTe—JZﬂfrdz._l_ J‘e—Zare—jZEfz'dz.

—o0 0

1 1 da
= - —+ - =
20— j24  2a+ j24 4% + 4722
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FIGURE 7.1 S s
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Above figure shows Power Spectral Density for oo = 1 and o = 2. Note that
o = 2 has a greater high-frequency content when compared with a smaller a.

Example: 7.2 Given: X(t) = a cos(2xft + 6), @uniformly distributed
(0,27), find Power Spectral Density. From Ex: 6.7 we have the

autocorrelation function:
2

Rx (7) :a?cos 21fgT
and the Fourier transform gives:
a’ a’ a’
SX (f) :7F{C0327lfof}=7§(f — f0)+76(f + fo)
2
The signal has average power Ry (0) :a7 where all of this power is

localized at £+ f; .

Example: 7.3 WSS White Noise in the frequency range: -W <f<W
White Noise band-limited in the frequency range: -W <f<W Hz, i.e.
colored (pink) noise. If w is very large then it is approximately white.
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Syl & Fyit

]

W
Average Power: E[X 2(t)]: | %df = NoW
W

Autocorrelation:
g j2AWr _gmi2aWr N sin(22W r)

-2zt 27T

1 W ot 1
Rx (r) == Ng [el"'7df ==Ng
2 % 2

Note: X(t) and X(t + t) are uncorrelated at t =+ k/2W , k=1, 2, ...
Power Spectral Density of White Noise W(t): S, (f) = % for all f.

As W — oo, we have: R,, () = %5&). If W(t) is Gaussian R. P. , then W(t)

Is White Gaussian Noise, is discussed in Example: 6.38

Example: 7.5 Given: Y(t) = X(t-d) where d is constant delay and X(t) is
WSS, compute the PSD function.
Rvx (7) =E[Y (t+ D)X ()] = E[X (t + 7 = d)X ()] = Rx (= - d)
Syx (f) = F{Rx (r—d)} = sx (f)e 127
=Sy (f)cos(2zfd)—jSx (f)sin(2zfd)

Ry () = E[Y t+ )Y ()] = E[X (t+ 7 —d) X (t—d)]= Rx (¢)
= Sy (f)=F{Ry (0)}=F{Rx ()}=5x (f)
Note: The result: sy (f)=sx (f) does not imply X(t) = Y(t).

Power Spectral Density for Discrete-Time Random Processes:
Sx (1) =FlRx (0}= TRx (K)o 127"

where -1/2 <f<%. Thisis due to sy (f)being periodic.

sy (f)>0and even function of f. sy (f)=sy (f +1)
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1 1/2 .
Rx (K)=3{sx (f)f= [ sx(f)el? " df
-1/2
Cross-Power Spectral Density: Assume that X, Y, are jointly WSS
Sxv () =F{Rxy (K)} where Ryy (k) = E[X Y ]

Example: 7.6 X, uncorrelated r.v., zero mean, variance o’x (White
Noise Process). Find the PSD function: Sx(f)

2
o k=0
Rx (K)=1"%
x (k) {0 k=0
and

Sy (=Y R, e ™ =S sko} e =062 for-1/2<f<1/2

Example 7.7: Given Y, = X, + aX,1 Where X, is white noise process of
Ex. 7.6
E[Y,]= E[X,]+aE[X41]=0
E[YnYn+k]: E[(Xn +aX n—l)(x ntk +aX n+k—1)]
= E[ann+k]"'O‘E[ann+k—1]+aE[Xn—1Xn+k]+a2E[Xn—1Xn+k—1]

0')2( k=0 0 k=0 a20'>2< k=0
0 k==+1 acy k=1 0 k=+1
0 ow 0 0.W. 0 0.W.

(+a?)oy k=0
EN, Yok ]={ ack k=+1
0 ow.

Sy () = FIEN Yoo = A+ a?)od +ac 2t +¢-i2nt}

—o% {(1+a2)+2a00327zf}

FIGURE 7.3

Power spectral density of moving
average process discussed in
Example 7.7.

N SY(f) 4

[~
~ v
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Power Spectral Density as a Time Average:

Periodogram: Let Xq, Xy, ..., X1 be k observations from a discrete-time
WSS Process

9 kA —j2zfm
X (f)= X xpe™! DFT of X,
m=0
Periodogram Estimate: P () =%|>‘<k(f)|2
then it can be shown that E{p, (f)} > sx (f) ask — o
If X(t) is a continuous-time WSS process then ﬁT (f)= %|;<T (f)|2
Where
Rr () =[x(t)e 1?7 dt!
then it can be shown that

E{pr (f)} >Sx(f) as T — o

Random Signals Through Linear Systems:

X() h(t) y(©)

Sx( — 71 H®O [ s

Let us recall that a system is linear if zero-in yields zero-out and if the
superposition theorem holds:

Tlaxy(O+/%(0] = aT[xu(O] + AT[x(D)]

Similarly, a system is time-invariant if x(t-t) yields y(t-t) , then
y(t) = x(t) *h(t) = ofh(S)X(t —s)ds = Th(t —s)x(s)ds

where h(t) is the impulg: response h(t)_: T[o(D)].

Transfer function or frequency response of the system:
H(f) = Fih®}= The 2"t

—00
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A system is causal if the response at t depends only on past and present
values of the input if h(t) =0 fort<O0.

For random signal input X(t) , then

Y(t)= [h(s)X(t—s)ds= [h(t—s)X (s)ds

If these integrals exist in the mean-square sense and if X(t) is WSS then Y/(t)
Is also WSS.

my = E[Y (t)] = E{?h(s)X(t—s)ds} _ Th(s)E[X (t—s)]ds

—00 —00

since X(t) is WSS, then my = E[X(t)] = E[X(t-5)].

my =E[Y(®]=my [h(x)dz=my [h(r)e 12470 dr =my H(0)

—00 —00

Ry (1) = EF @)Y (t+12)]= Eﬁ h(s)X (t—s)ds Th(r)X(tJrr—r)dr}

—00 —00

T Th(S)h(NE[X (t=s)X (t+7—r)]dsdr = [ [h(s)h(r) Ry (z +S—r)dsdr

—00 —00 —00 —00

Sy (1) =F{Ry ()= [Ry (e 12777 d7

—00

T Of Th(s)h(r) Ry (r+s—r)e 1277 dsdrd ¢

—00

Letu=r+s—r and substitute above:

Sy(F)= [ [h(s)h(r) Ry (U) e~ 127 =51 dsdrdu

—00 —00 —00

= [ h(s)eiZ*fsds | h(r)e 127 1T dr [Ry (u)e~127fudu

—00 —00 —00

“H (DH () sx () =[H(.5 ()

These lecture notes are prepared by Hiiseyin Abut for Leon-Garcia text, August 2006



129

Example: 7.9 Filtered White Noise: White noise as a signal with power

spectral density (PSD) Sy (f) =% Is band-limited by a linear, time-

invariant system with a frequency response: H(f). What is the power
spectral density of Y(t)?

Sy (f)=|H(F)? Mo

2

Therefore, the transfer function determines the shape of the output power
spectral density.

| No2 HOP
% S f | P 2

f — > f

Example: 7.11 Given: Z(t) = X(t) + Y(t)  X(t) and Y(t) independent r.v.’s
with power spectral density Fig 7.6(a)

Low Pass Filter output:
sw(f)=|Hp () sx (F)+|H e () Sy (f)=5x ()
[ [

1 0
Sw(f) = Sx(f) but W(t) = X(t)

We can show that W(t) = X(t) in the mean square sense.

Band Pass Filter output:
2 2
Sw(f)Z‘H BP(f)‘ Sx(f)+‘H BP(f)‘ Sy (f)=sy(f)
k_ﬁ/__J

\_W—J

0 1
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FIGURE 7.6
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Example: 7.12 Random Telegraph Signal passed through an RC low-pass
filter with a transfer function:

B
H(f)=— _ URC is the i
(f) Bt jonf where B = 1/RC is the time constant

2 ,32 4o
SY(f)_|H(f)| > (f)_[ﬂz +47Z'2f2](40{2 +47Z'2f2J
from Ex:7.1

__4ap? { 1 }
B2 -4a? |40 +4x262 2 1an 212
and the inverse FT yields the autocorrelation function:

Ry (7) = F {5y ()} = ——— {82 ¢ 24l 20562/

f°—4da
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Discrete-Time Systems
If hy is the response of a discrete LTI system to a unit-sample input, i.e.,

1 n=0
0=
{O n=0
then the response will be:
Yn =Xn *hn = Z hJXn_J = Z thn—j
J=—0 J=—©
The transfer function or Frequency Response of the system is given by
H(f)= Shyei2e"
j=—c0
If X, is a WSS process then Y, is also WSS with mean
mY :mx Z hj :mx H(O)

j=—o0

and then autocorrelation function
Ry (k)= X X hjhRx (k+]j-1i)

=—00 |=—00
and Power Spejctral Density of Y,
Sy () =[H()* sx ()
Example: 7.14 First-order autoregressive process: Y, =aY,_; + X, , Where
X, is zero-mean white noise with average power o% .

Xnp—» » Yh
+
o D

Unit-sample response

0 n<O
h,=¢1 n=0
a” n>0
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We need |a| < 1 for system to be stable from linear systems theory and the
transfer function will be

G : 1
H(f)= ane—j2ﬂ'fn=—.
(f) n§0 1-qe 127t
2
2 ox
Sy (f)=|H(f)" sx(f)= . .
=P sx (D=1 ey 27
ok ok

1+a2+(ae—j27zf+aej2”f) 1+a® -2acos2rf

k _0>2<05k

Ry (k)= X zhjhi0)2(5k+j_i=0'>2( _Zajaj+ 5
J:

j=0i=0 0 l-«a

Example 7.15 Autoregressive Moving Average (ARMA) Process
q p
Yn = _zalYn—i + Zﬂi’wn—i'
i=1 i'=0
where W, is a WSS, white noise input process. The transfer function is

%ﬁj izt
H(f)= "=°q —
1+ zaJ e—]27zf|

i=1

The power spectral density is
sy () =[H(f)[* o
Special cases:
e Autoregressive (AR) Process is an ARMA process with

BO =1; Bl = BZZ vee = Bp: 0
e Moving Average (MA) process is an ARMA process with
ao=1l,01=a,= ...:aq:O

v
_<
S
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Amplitude Modulation (AM) of Random Signals

A(t) . X(t) A(t): WSS random information
g X signal with a power spectral
density Sa(f) (Baseband
. Signal) (Fig. 7.7a)
carrier fc

FiGURE 5.7

AM: X(t) = A(t)cos(2nfct + 0) with A(t) & 6 independent of each other
And 6 uniformly distributed (0, 27)
Autocorrelation:

Rx (7) = E[X(t+ )X (t)]
= E[A(t + 7) cos(2Af ¢ (t + 7) + O)A(t) cos(2Af ot + 6)]
= E[A(t + 7) A(t) [E[cos(24f ¢ (t + ) + O)cos(2Af -t + )]

=Ra(7)E %cos(hfcr) + %cos(hfc (2t+7)+ 26?)
0

_ % Ra(r)c0S(2fcz) = X (t) is also WSS

S5 (1) = {3 Ra() 0052t r) | = S a1+ o) +5 (T = o)

(For Bandpass Signal see Figure 7.7b)
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Demodulation:

X(t) Y (1)

LPF |

2c0s(2nfct + 0)
Y (t) = X(t) 2cos(2xnfct + 0)

Using the above procedure we get
Sv(f) = 1/2(Sx(f+fc))+1/2 (Sx(f-fc))
= 12{Sa(f + 2fc) + Sa(N} + 1/2{ Sa(f) + Sa(f - 2fc)}

Let LPF be a good LPF to pass Sa(f) in—-w < <w
But suppress Sa(f + 2fc) and Sa(f - 2fc) Then Y(t) = A(t) recovered
information signal

Quadrature Amplitude Modulation (QAM)

FIGIFRE 7.5

b} e bl o] evem Fanctior [

I'Edal i visriiaard rold
G e ITEQ ATy (02
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X(t) = A(t)cos(2ct + 6) + B(O)sin(2fct + 6)

A(t), B(t): real-valued jointly WSS process and let
Ra(r)=Rg(7)
Rea(7) =—Rag (7)
= Sa(f)=sg(f) Real-valued with even spectra (Figure 7.9b)
= Sga(f)

Purely imaginary (Figure 7.9c¢)
It is shown that X(t) is WSS with
Rx (r) =Ra(7)cos(2af-7) + Rga () Sin(24f - 7)
and

Sx (1)=2{Sa(f — fe)+Sa(f + fc)}+2ij{sBA(f o) - Seal(f + fo))

WSS White Noise can be filtered by such bandpass filters

Example: 7.16 Demodulation of signal corrupted by additive noise
Y (t) = At) cos(27f .t +6)+ N(t)
where N(t): Bandlimited white noise with power spectral density

No 1psfe|<w

Sn(f)= 0 O.W.

We now obtain SNR of the recovered signal
Y (t) = [A®t) + N¢ (t)]cos(2af t + 8)— Ng (t) sin(27f ot + 0)

Demodulate with 2cos(24fct +6)
2Y (t) cos(27f ot +0) = {A(t) + N¢ (t)}2cos? (24 ot + 6)— N (t)2cos(24f . t + 0)sin(27f .t + 0)
= {A(t) + N¢ (t) {1+ cos(4rfct + 20))— N (t) sin(4xf .t + 20)

After low-pass filtering, the recovered signal is A(t) + N¢ (t)

The signal power and noise are

, W
oph= [Sa(f)df
W

W W N N
2 0 0
GNC —_\{VSNC(f)df—_\{v[—z +—2 jdf—ZWNO
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and the SNR is simply:

2
SNR = _ZA

No

#7.3 Find Power Spectral Density , Sy of Rx(t)cos(2nfot)
Sy (f)=F[Rx (r) cos 27 fo7]

127 for 4 =27 for

:% F[Rx (Z’)ejZ”fOT]+%S[RX (Z') e—j27z’for]

where

=§sx (f - f0)+%8x(f + fo)
Sx (f)=F[Rx (7)}

#7.8 X(t) and Y(t) are independent WSS r.p. with: Z(t) = X(t) Y (t)
a) Show Z(t) is WSS

E[Z(t)] = E[IX (DIELY ()] = my my

Rz (t,t+7) = E[X )X (t+7)Y ()Y (t+7)]= E[X ()X (t+ ) [E[Y (V)Y (t +7)]

=Rx (7)Ry (r) =Rz (7)
Therefore, Z(t) is WSS

b) Find Rz(t) (shown above) and Sz(f)

5z (f) =3[Rz ()]=3[Rx (7) Ry (2)]=5x (f) xSy (f)

#7.18 Y(t) is derivative of X(t), a bandlimited white noise process, Ex: 7.3
a) Find Sy(f) and Ry(x)

sy (f)=|H(f)? sW(f):|j2ﬂf|2%=27r2f2No f<W

w
j2ﬁfr(—472'2 f2r2 —2j27rfz'+2)

W -
R, (?) = [27°1?Ng """ "df =27°N,| g

W (j27w)3 W
— 272N, [ j2rW e (2—47r2W22'2 —4j7rWz'>_ —j2rWr (2—47[2W21'2 +4j7rWz')

o€ - j8z’c® € — j8r’c?

47°N :

R, (7) = ﬁ[— (2-472W 222 )sin 22W £ + 472W 7 cos 27W

T T

N .

= 20 [272W 7 cos 22W — (1 22°W %22 Jsin 22W |
T
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b) What is the average power of the output?
W W 2 3
Ry (0) = [ Sy (f)df = [272 1 2Ngdf = 2 N0
-w -w
#7.38 Random Telegraph Signal with transition rate o.. Given fc = a/m and f¢
= 10a/m. Plot the power spectral density:

4o
Sx(N)=—%———
X Aa® + 47212

1 1
SY(f)ZESx (f+ fc)+§Sx(f - fe)

B 2a N 2a
4o’ +4n%(f+12)% o’ +4x%(f—fc)?
2a 2a
= +

Cda?r(wr2nfe)? dal+(w-2rfc )

where w = 2rf

B

-2ex 2al) 2oy 4oy e
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