Chapter 5: Sums Random Variables

Let
$$S_n = X_1 + X_2 + ... + X_n$$

 $E[S_n] = E[X_1] + E[X_2] + ... + E[X_n]$

Ex: 5.1 Find
$$\sigma_Z^2$$
 where $Z = X + Y$ $E[Z] = E[X] + E[Y]$
 $\sigma_Z^2 = E\{[(X + Y) - (E[X] + E[Y])]^2\} = E\{[(X - E[X]) + (Y - E[Y])]^2\}$
 $= E[(X - E[X])^2] + E[(Y - E[Y])^2] + 2E[(X - E[X])(Y - E[Y])]$
 $= \sigma_X^2 + \sigma_Y^2 + 2COV(X, Y)$

If X and Y are uncorrelated or independent, then COV(X,Y) = 0 and

$$\sigma_Z^2 = \sigma_X^2 + \sigma_Y^2$$

$$\sigma^2_{S_n} = E \left\{ \sum_{j=1}^n (X_j - E[X_j]) \sum_{k=1}^n (X_k - E[X_k]) \right\}$$

$$= \sum_{k=1}^n \sigma^2_{X_k} + \sum_{\substack{j=1 \\ but \ j \neq k}}^n \sum_{k=1}^n COV(X_j . X_k) = \sum_{k=1}^n \sigma_{X_k}^2$$

Ex: 5.2 X and Y are i.i.d. r.v. with μ and σ^2

$$E[S_n] = E[X_1] + \dots + E[X_n] = n\mu$$

$$\sigma_{S_n}^2 = n\sigma_{X_j}^2 = n\sigma^2$$

pdf of Sums of r.v.:

Z = X + Y and X & Y are independent. n=2

Let us use characteristic function approach:

$$\Phi_Z(w) = E\left[e^{-jwZ}\right] = E\left[e^{-jw(X+Y)}\right] = E\left[e^{-jwX}\right] \cdot E\left[e^{-jwY}\right]$$

$$= \Phi_X(w) \cdot \Phi_Y(w)$$

Since $\Phi_Z(w) \Leftrightarrow f_Z(z)$

we can write equivalently:

$$f_Z(z) = f_X(x) * f_Y(y)$$

$$S_n = X_1 + \dots + X_n \quad \Rightarrow \quad \Phi_{X_1}(w) \cdot \Phi_{X_2}(w) \cdots \Phi_{X_n}(w)$$

On the other hand, if $\{X_i\}$ are all integer-valued r.v., then we can use probability generating function approach:

$$G_N(z) = E[z^N]$$
 and $N = X_1 + ... + X_n$

which leads to:

$$G_N(z) = E \left[z^{X_1 + \dots + X_n} \right] = G_{X_1}(z) \cdot G_{X_2}(z) \cdot \dots \cdot G_{X_n}$$

Ex: 5.4 and 5.5 Let $S_n = X_1 + ... + X_n$ be sum of i.i.d. with $\Phi_{X_k}(w) = \Phi_X(w)$ k = 1,2,...n

then

$$\Phi_{S_n}(w) = \left\{ \Phi_X(w) \right\}^n$$

pdf of S_n if X_k are i.i.d. exponential r.v.

$$\Phi_X(w) = \frac{\alpha}{\alpha - jw}$$

then

$$\Phi_{S_n}(w) = \left[\frac{\alpha}{\alpha - jw}\right]^n$$
 \Rightarrow S_n : m-Erlang r.v. of Table

Sample Mean, M_n

Let $X_1, ..., X_n$ be n independent outcomes from experiments with an unknown mean, μ . Since they are from the same population X_i is i.i.d. with the same pdf:

$$M_{n} = \frac{1}{n} \sum_{j=1}^{n} X_{j} \implies Centroid, Center of Gravity$$

$$E[M_{n}] = E\left[\frac{1}{n} \sum_{j=1}^{n} X_{j}\right] = \frac{1}{n} \sum_{j=1}^{n} E[X_{j}] = \frac{n}{n} E[X_{j}] = \mu$$

$$\sigma_{M_{n}}^{2} = E[(M_{n} - \mu)^{2}] = E[(M_{n} - E[M_{n}])^{2}]$$

But

$$S_n = X_1 + X_2 + \dots + X_n \Rightarrow M_n = \frac{S_n}{n}$$

$$\sigma_{S_n}^2 = n \sigma_{X_j}^2 = n \sigma_X^2$$

Then:

$$\sigma_{M_n}^2 = \frac{1}{n^2} \sigma_{S_n}^2 = \frac{1}{n} \sigma_X^2$$

Chebyshev's Inequality for M_n (Sample Mean):

$$P[|M_n - E[M_n]] \ge \varepsilon] \le \frac{\sigma_{M_n}^2}{\varepsilon^2} = \frac{(1/n).\sigma^2}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}$$

and compliment:

$$P[|M_n - E[M_n]] < \varepsilon] \ge 1 - \frac{\sigma^2}{n\varepsilon^2}$$

Ex: 5.9 Given noisy voltage measurement with:

$$X_{j} = v + N_{j}$$
 with $N_{j}: N(0, 1\mu V)$

How many measurements are needed (n = ?) for M_n to be within $\varepsilon = 1 \mu V$ of true mean is at least .99?

$$P[|M_n - \mu| < \varepsilon] \ge 1 - \frac{\sigma^2}{n\varepsilon^2}$$

$$= 1 - \frac{(1\mu V)^2}{n(1\mu V)^2} = 1 - \frac{1}{n} = 0.99 \qquad \Rightarrow n = 100$$

Weak-Law of Large Numbers:

Let
$$X_1, X_2, \dots$$
 be a sequence of iid R.V. with $E[X_i] = \mu$, then for $\varepsilon > 0$ $\lim_{n \to \infty} P[|M_n - \mu| < \varepsilon] = 1$ >>>(seeFig 5.1 p 278 for interpretation)

Strong-Law of Large Numbers:

Let $X_1, X_2, ...$ be a sequence of iid R.V. with $E[X_i] = \mu$ and finite variance, then

$$P\left[\lim_{n\to\infty}M_n=\mu\right]=1$$

Ex: 5.10 Bernoulli trials with unknown $\mu = p$ and $\sigma^2 = p(1-p)$ How large n should be to have 0.95 probability that $f_A(n)$ is within 1% of p = P[A]?

If $X = I_A$ indicator function, then:

$$E[X] = E[I_A] = \mu = p$$

$$\sigma_{I_A}^2 = p(1-p)$$

$$\frac{d\sigma^2}{dp} = 1 - 2p = 0 \Rightarrow p^* = \frac{1}{2}$$

$$\Rightarrow \sigma_{I_A}^2 \le \left(\frac{1}{2}\right)\left(1 - \frac{1}{2}\right) = \frac{1}{4}$$

$$\therefore P\left[\left|f_A(n) - p\right| \le \varepsilon\right] \le \frac{\sigma^2}{n\varepsilon^2} \le \frac{1/4}{n\varepsilon^2}$$

Note: Chebyshev inequality results in loose bounds.

Since:
$$\varepsilon = 1\% = 0.01 \text{ and } 1 - 0.95 = \frac{1}{4n(0.01)^2} \Rightarrow n \ge 50,000$$

Central Limit Theorem:

Let $X_1, X_2, ...$ be a sequence of iid RV. With μ and σ^2 and

$$S_n = X_1 + X_2 + \dots + X_n$$

Let us define a new r.v.: $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$,

Then

$$\lim_{n\to\infty} P[Z_n \le z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} dx$$

\Rightarrow Sum of iid R.V. with any distribution in the limit approaches to that of Gaussian statistics!

Ex: 5.11 Orders: iid with $\mu = \$8$ $\sigma = \$2$

a.) Estimate probability that first 100 customers will spend \geq \$840.

$$S_{100} = X_1 + X_2 + \dots + X_{100}$$

$$E[S_{100}] = n\mu = 800$$

$$Z_{100} = \frac{S_{100} - 800}{2\sqrt{100}} = \frac{S_{100} - 800}{20}$$

$$\sigma S_{100}^2 = n\sigma^2$$

$$= 100x4 = 400$$

From Figure 5.5 in Page 284 and Table 3.3 we have

$$P[S_{100} > $840] = P[Z_{100} > \frac{840 - 800}{20}] = P[Z_{100} > 2] \approx Q(2) = 0.0228$$

b.) Prob. that 100 customers will spend $$780 \le S_{100} \le 820 ?

$$P[780 \le S_{100} \le 820] = P[-1 \le Z_{100} \le 1]$$

 $\approx 1 - 2Q(1) = 0.682$

Ex: 5.12 After how many orders 90% sure that total expenditure > \$1000? Find n for which $P[S_n > $1000] = 0.90$

Recall
$$E[S_n] = 8n$$
 $\sigma_S^2 = 4n$
 $P[S_n > $1000] = P \left[Z_n > \frac{1000 - 8n}{2\sqrt{n}} \right] = 0.90$

Note:
$$Q(-X) = 1 - Q(X) \implies 0.90$$

 $\implies Q(-X) = 0.1 \implies X = -1.2815$

From Table 3.4, we get:
$$\frac{1000 - 8n}{2\sqrt{n}} = -1.2815$$

 $\Rightarrow 8n - 1.2815(2)\sqrt{n} - 1000 = 0$
 $\Rightarrow \sqrt{n} = 11.34$ $\Rightarrow n = 128.6 \text{ or } 129$

Gaussian Approximation to Binomial Probability:

From Central Limit Theorem for n large:

$$P[X = k] \approx P\left[k - \frac{1}{2} < Y < k + \frac{1}{2}\right] \approx \frac{\exp\left\{-\frac{(k - np)^2}{2np(1 - p)}\right\}}{\sqrt{2\pi np(1 - p)}}$$

where $\mu = np$ and $\sigma^2 = np(1-p)$ of binomial distribution.

Ex: 5.14 In Ex: 5.10 Using Strong Law of Large Numbers we have obtained:

$$\Rightarrow$$
 n \geq 50,000

Let $f_A(n)$ be relative frequency of A in n-Bernoulli trials and let us use the Gaussian approximation to Binomial distribution:

$$E[f_A(n)] = p \text{ and } \sigma_A^2 = \frac{p(1-p)}{n}$$

$$\Rightarrow Z_n = \frac{f_A(n) - p}{\sqrt{\frac{p(1-p)}{n}}} \text{ with } E[Z_n] = 0 \text{ and } \sigma_{Z_n}^2 = 1 \text{ if } n \text{ is large.}$$

then,

$$P\Big[\left|f_{A}(n)-p\right|<\varepsilon\Big]\approx P\Bigg[\left|Z_{n}\right|<\frac{\varepsilon\sqrt{n}}{\sqrt{p(1-p)}}\Bigg]=1-2Q\Bigg(\frac{\varepsilon\sqrt{n}}{\sqrt{p(1-p)}}\Bigg)$$

using

$$\frac{d\sigma^2}{dp} = 0 \implies \frac{d \ p(1-p)}{dp} = 0 \implies p^* = \frac{1}{2} \implies p(1-p) \le \frac{1}{4}$$

then

$$\sqrt{p(1-p)} \le \sqrt{\frac{1}{4}} = \frac{1}{2}$$

which results in:

$$P[|f_A(n) - p| < \varepsilon] > 1 - 2Q(2\varepsilon\sqrt{n})$$

$$0.95 \text{ is required} \Rightarrow 2Q(2\varepsilon\sqrt{n}) = \frac{1 - 0.95}{2} = 0.025$$

from Table 3.3

 $\Rightarrow 2\varepsilon\sqrt{n} \approx 1.95 \Rightarrow n \ge 9506$; Much smaller than the result in Ex: 5.10

(Skip Sections 5.4, 5.5 & 5.6)

Finding Distributions Using DFT(FFT)

Let X be an integer-valued discrete R.V. in the range: $\{0, 1, ..., N-1\}$: then

$$\Phi_X(w) = \sum_{k=0}^{N-1} p_k e^{jwk}$$

where $p_k = P[X = k]$ is pmf

and the characteristic function: $\Phi_X(w)$ is periodic in 2π since:

$$e^{jwk} = e^{jwk} e^{j2\pi k} = e^{jk(w+2\pi)}$$

Let us sample function: $\Phi_X(w)$ at *N*-equally spaced values:

$$c_m = \Phi_X \left(\frac{2\pi}{N} m \right) = \sum p_k e^{j\frac{2\pi k m}{N}}$$
 for m=0,1,...,N-1

Inverse DFT would yield:

$$p_k = \frac{1}{N} \sum c_m e^{-j\frac{2\pi km}{N}}$$
 for k=0,1,...,N-1

Extend the range of X to $\{0, 1, ..., N-1, N, ..., L-1\}$ by defining

$$p'_{j} = \begin{cases} p_{j} & 0 \le j \le N-1 \\ 0 & N \le j \le L-1 \end{cases}$$

DFT yields:

$$c_m = \Phi_X \left(\frac{2\pi}{L} m \right)$$
 for $m = 0, 1, ..., L-1$

Sum of iid integers:
$$Z = X_1 + X_2 + ... + X_n$$

If
$$X_i$$
: {0, 1, ..., N-1} then Z :{0, ..., $n(N-1)$ }

Obtain pmf of Z from DFT evaluated at L = n(N-1) + 1 points

$$d_m = \Phi_Z \left(\frac{2\pi m}{L}\right) = \left[\Phi_X \left(\frac{2\pi m}{L}\right)\right]^n \qquad \text{for } m = 0, 1, ..., L-1$$

Since

$$\Phi_Z(w) = \left[\Phi_X(w)\right]^n$$

then

$$P[Z=k] = \frac{1}{L} \sum_{m=0}^{L-1} d_m e^{-j\frac{2\pi mk}{L}} \qquad for k = 0, 1, ..., L-1$$

Ex: 5.33 Let
$$Z = X_1 + X_2$$
 with $\Phi_X(w) = \frac{1}{3} + \frac{2}{3}e^{jw}$

Find: P[Z=1] via DFT. Since $X: \{0,1\}$, then $Z: \{0,1,2\}$

$$\Phi_Z(w) = \left[\Phi_X(w)\right]^2$$

$$d_{m} = \Phi_{Z}(w) = \left[\Phi_{X}(w)\right]^{2} = \left[\frac{1}{3} + \frac{2}{3}e^{j}\frac{2\pi m}{3}\right]^{2} \qquad for \ m = 0, 1, 2$$

$$d_{0} = \left[\frac{1}{3} + \frac{2}{3}\right]^{2} = 1 \qquad d_{1} = \left[\frac{1}{3} + \frac{2}{3}e^{j}\frac{2\pi}{3}\right]^{2} = \frac{1}{9} + \frac{4}{9}e^{j}\frac{2\pi}{3} + \frac{4}{9}e^{j}\frac{4\pi}{3}$$

$$d_{1} = \frac{1}{9} + \frac{4}{9}\cos(120) + \frac{4}{9}j\sin(120) + \frac{4}{9}\cos(240) + \frac{4}{9}j\sin(240) = -\frac{1}{3}$$

Similarly,

$$d_2 = d_1^* = -1/3$$

Substituting these in pmf equations:

$$P[Z=1] = \frac{1}{3} \left\{ d_0 + d_1 e^{-j\frac{2\pi}{3}} + d_2 e^{-j\frac{4\pi}{3}} \right\} = \frac{1}{3} \left\{ 1 - \frac{1}{3} \left(e^{-j\frac{2\pi}{3}} + e^{-j\frac{4\pi}{3}} \right) \right\} = \frac{4}{9}$$

Let $S_X = \{0, 1, 2, ...\}$ be an open-ended sequence and $\Phi_X(w)$ is known. We want to obtain pmf values p'_k from a finite set of samples the characteristic function:

$$p'_{k} = \frac{1}{N} \sum_{m=0}^{N-1} c_{m} e^{-j\frac{2\pi km}{N}}$$
 for $k = 0, 1, ..., N-1$

$$c_{m} = \Phi_{X} \left(\frac{2\pi m}{N} \right) \qquad \text{for } m = 0, 1, ..., N-1$$

$$c_{m} = \sum_{n=0}^{\infty} p_{n} e^{j\frac{2\pi mn}{N}}$$

$$= (p_{0} + p_{N} + p_{2N} + ...)e^{j0} + (p_{1} + p_{N+1} + ...)e^{j\frac{2\pi m}{N}}$$

$$+ ... + (p_{N-1} + p_{2N-1} + ...)e^{j\frac{2\pi m(N-1)}{N}}$$

$$= \sum_{k=0}^{N-1} p'_{k} e^{j\frac{2\pi km}{N}} \qquad \text{with } p'_{k} = p_{k} + p_{N+k} + p_{2N+k} + ...$$

From inverse DFT we get $p'_0, p'_1, ..., p'_{N-1}$ which are equal to the desired p_k plus an error term e_k .

$$p'_0 = p_0 + e$$
 and $e_k = p_{N+k} + p_{2N+k} + p_{3N+k} + ...$

If N is large e_k can be made very small.

Ex: 5.35 X: geometric R.V. Find N such that percent error is 1%.

Recall that: $p_k = (1-p)p^k$

$$e_{k} = \sum_{h=1}^{\infty} p_{k+hN} = \sum_{h=1}^{\infty} (1-p)p^{k+hN} = (1-p)p^{k} \frac{p^{N}}{1-p^{N}}$$
% error $= \frac{e_{k}}{p_{k}} = \frac{p^{N}}{1-p^{N}} = a \cdot 100\%$

$$\frac{p^{N}}{1-p^{N}} \le 0.01 \implies 100p^{N} \le 1-p^{N} \implies 101p^{N} \le 1$$

$$\implies p^{N} \le \frac{1}{101} \implies N \log p \le -2$$

$$N > \frac{-2}{\log p} \implies N > \text{Sign change because of } p < 1 \text{ and } \log p < 0$$

Example:

p	N
.1	2
.5	7
.9	44

Continuous R.V.:

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(w) e^{-jwx} dw \approx \frac{1}{2\pi} \sum_{m=-M}^{M-1} \Phi_X(mw_0) e^{-j\frac{2\pi nm}{N}}$$
 for $-M \le n \le M-1$

and

$$c_m = \frac{w_0}{2\pi} \Phi_X (mw_0)$$

See Ex: 5.36 for N = 512 p. 315

#5.1
$$U = X + Y + Z$$
 X,Y,Z zero-mean, $\sigma^2 = 1$ $COV(X,Y) = 1/4$ $COV(Y,Z) = -1/4$ $COV(X,Z) = 0$

a) Find mean & variance

$$E[U] = E[X + Y + Z] = E[X] + E[Y] + E[Z] = 0$$

$$\sigma_{\text{U}}^2 = \sigma_{\text{X}}^2 + \sigma_{\text{Y}}^2 + \sigma_{\text{Z}}^2 + 2\text{COV}(X,Y) + 2\text{COV}(X,Z) + 2\text{COV}(Y,Z)$$

= 1 + 1 + 1 + 2(1/4) + 2(0) + 2(-1/4) = 3

b) X,Y,Z are uncorrelated

$$E[U] = 0$$

$$\sigma_U^2 = \sigma_X^2 + \sigma_Y^2 + \sigma_Z^2 + 0 + 0 + 0 = 3$$

#5.3 $X_1, ..., X_n$ are R.V. with identical μ and $Cov(X_i, Y_j) = \sigma^2 . \rho^{|i-j|}$. If $|\rho| < 1$ find $E[S_n]$ and $\sigma^2_{S_n}$ $E[S_n] = n.\mu$

Covariance Matrix is a Toeplitz matrix.

$$K = \begin{bmatrix} \sigma^2 & \rho\sigma^2 & \rho^2\sigma^2 & \cdots & \rho^{n-1}\sigma^2 \\ \rho\sigma^2 & \sigma^2 & \rho\sigma^2 & \cdots & \rho^{n-2}\sigma^2 \\ \vdots & & & & \\ \rho^{n-1}\sigma^2 & \cdots & & \sigma^2 \end{bmatrix}$$

$$\sigma_{S_n}^2 = n\sigma^2 + 2\rho\sigma^2 \sum_{j=1}^{n-1} \sum_{k=0}^{j-1} \rho^k = n\sigma^2 + 2\rho\sigma^2 \sum_{j=1}^{n-1} \frac{1-\rho^j}{1-\rho}$$
$$= n\sigma^2 + 2\rho\sigma^2 \left[\frac{n-1}{1-\rho} - \left(\frac{\rho}{1-\rho}\right) \frac{1-\rho^{n-1}}{1-\rho} \right]$$