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Chapter 3: Random Variables

Consider an Experiment with a Sample space S with outcomes &

X(©) =
R
/E N )
S Y
S

e A random variable X is a function that maps each outcome of an experiment
to a real number X(&).

e Sisthe domain of x_and the set Sy is the ensemble of all values taken by X
and called range of X

Ex: 3.3 Consider coin-tossing, where {X = k} = { k heads in 3 coin tosses}
S={hhh, ..., ttt} S, ={0, 1, 2, 3}

Po = P[x = 0] = (1-p)° since P{TTT} = (1-p)°

Py =P[x=1]=3(1-p)’p

P, =P[x = 2] = 3(1-p)p’

P;=P[x=3]=p°

o |If Alis the set of outcomes & in S that lead to values X(§) inB: A={¢:
X(&) in B}, then B in S, occurs whenever A in S occurs. Then
P(B) = P(A) = P[{& : X(§) in B}]

and A and B are equivalent events in different spaces.

Cumulative Distribution/Probability Density Functions
Cumulative Distribution Function (cdf) of X is defined by:
Fx(X) = P[X <x] for-co<x< o

Probability Density Function (pdf) is defined as:

9= X )

Both cdf : F,(x) and pdf f,(x) are functions of the real variable x.

Axioms and Properties:
1. 0<F(X) <1 and f,(x)>0
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lim Fy (x)=1 and Ofo(x)dx:l

X—>00 o

lim Fy(x)=0 and Fy (x)= )j(f(x’)dx'

X—>—00

F«(x) is a non-decreasing function of x, in other words

—0o0

b

a<b then: Fy(a) <F«(b) and Pla< X <b]=P[X =a}+P[a< X <b]=] fy(x)dx
a

F«(x) is continuous from the right, in other words for h > 0

Fy(b) = t!im0 Fy(b+h) = Fx(b+)
P[a < X <b] = Fy(b) - F,(a)
P[b - £< X <b] = Fy(b) - F(b)

If € >0 then P[X =b] =Fx(b) - Fx(b)
and if cdf is continuous at x = b , then {X=b} has probability zero.

Correlary 1: P[X > x] = 1 - F«(x)

Ex:3.4and 3.5 Tossing 3 coins and {x} = {# of heads}

cdf and pdf

Felx] P T I

HY

Near x=1 let >0, small then

But:

Fx(1- 8) = P[X <1-08] =P{0 heads} =1/8
Fu(1) =P[X <1]=P{0or 1 heads} =1/8 + 3/8 = 1/2

and Fy(1+03) =P[X<1+3]=P{0or1heads}=1/2
cdf can be written in terms of unit step functions when there are discontinuities:

Fx(X) = (1/8)u(x) + (3/8)u(x-1) + (3/8)u(x-2) + (1/8)u(x-3)

pdf can be written in terms of &(-) function for discrete prob. events:

fu(x) = (1/8) & (X) + (3/8) & (x-1) + (3/8) & (x-2) + (1/8) & (x-3)
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and
2 3 3 3
Pll< X <2]= [ fy(X)dx == P2<X <3]=| fy(X)dx=—=
1+ 8 2 8
Ex: 3.5 Transmission time X in a communication system obeys
PX>x)=e®™ x>0 and A=rate= 1T

1M if x>0

cdf: Fx (x)=P[X <x]=1-P[X >x]={ !
0 if x<0

Find:
P[T<X<2T]=(1-€9)-(1-e")=et-e?~0233
—AX
Frx=d7 5 x>0 and pdf: f.(x)
0 x<0

Tyl

[ ]

Discrete r.v. are described by prob. mass function (pmf) of X as the set of
probabilities
px(X) = P[X =x4] in S,

cdf for discrete r.v.: Fy (X)=3 px (X)u(x—xy)

k
Continuous r.v. is a r.v. with a continuous cdf and the cdf is equal to the area
under the pdf curve upto the point x: F, (x) = )j(fx(x)dx

Mixed r.v. has a cdf with jumps on a countable set of points but also increase
continuously over at least on one interval.

cdf : Fy (X) = pF(X)+ Q- p)Fo(X) O<pxl
Cdf of discrete r.v. cdf of cont. r.v.
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R.V. Examples: Discrete: p. 100

TABLE 3.1 Bernoulli Random Yariable IA(X) = 0 &_} z A
Dhzcrele Fanzom Vanables Se =10, 1) 1 é A
S

po =g = li=p = b=p=1

ElXI=p  VARLX] = sl - p) P[A] =p success
Gylz) = (g psd

Remargs: The Bernoulli random variabde s the value of the indicawor function §/, for some

ceent A X = 1A cocurs and X = 0 otherwise

Binomial Random Variable
5= l:IZI,].. |

Let X be # of times A occurs in n
trials. If I; is indicator fn. for A in
jth trial, then X = I1+1,+...+1, and
Remerks: X i tlhe oumber ol successes in ff Bernoulli teials ;=|1|.ll:)[;?§::u-=|h|§1:ufn E);J(r

independent, identically distribwed Bernoulli mndom varables,

po= {:Jpn*l prY k=01, ,n

E[X] = rp VAR[IX] = nmpll — n)
frypizy = (g + g2

Geometric Kandom Variahle
First Version: &, = (0.0,2,.. .}

PPl —pr k=0 pmf:  P[M =Kk] = px which decays

- B sl geometrically with k where
R — > p=P[A]is prob. success in each
Ener Bernoulli trial. (see fig 3.9)

Remarke: X 15 the number of failures befone the rst success in o sequence of independent
Tiernonili arials.

The geametric random variable 15 the enly discrete random vacable with e memaryless
PropeaLy.

| —
E[X] = - £ VAR[X] =

Secomd Version: Seo= {12, ..}
pe=pil = pt! R e
E[X'] = II~ VAR[X'] = ':.P

(yds) = kil ki

1 — g&
Femardz: X' = X 4+ 1 15 the number of wrials unnl the st seccess inoa sequence of
independent Bernoull trinls,

Megative Binomial Random Yariahle

Ko = (ror+1,._ .}, where v is a positive inceger
I - ] 5
= = prr =r,
A lJpl nl E=rr+1,

! - 1—pm
B[] =n SARpy] T
I e

¥ [ }
Guls) =

R
Renearks: X is the number of trials until the rth success inoa sequence of independent
Bernaulli irils.

Poisson Random Variable

Sl # of occurrences of an event in a certain
ot time period as in counts of radioactive

Py = g R=D, 0,0, amd a0

T substances, counts of demands for tel.
.|’:'|'_.":! = ".-r.r':.H[.}f] = .
networks connections.

Golz) =gl

Memgrke: X othe momber of evens thar ocour in one ime unit when the tdme beracen
events is exponentially distribosed with mean 170

k
pmf: P[N=k]:%e_a for k=01.., a>0

o ave. # of occurrances in a specified time unit (fig 3.10 for pmf)
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Remarks on Discrete Distributions of Table 3.1
1) cdf of geometric r.v.

K o k-1 1—
PIM <k]= Spglt=py g =p=—0 g
j=1 1=0 1-q

P[N=k]=P[M >k +1]=(1-p)*p k=012,...

Let N=M-1 # of failures before a success occurs, then
Geometric r.v. satisfies memoryless property:

PIM>k+j|m> j]=P[M >k] forall jk>1
Thus, each time a failure occurs, the system forgets and begins anew as if it were performing
first trial. It occurs in queuing system models.

2) pmf of Poisson r.v. sums to 1:

k o0
Z We a: Z
k=0 k =

k

& e
Kl €

0

k
Pk =(E)pk(l— p)" K zi—le‘“ fork=01,...

Law of large numbers for Bernoulli trials: If n is large and p > 0 small, then for o = np

Ex: 3.11 Givenp,=10°  Find a packet of 1000 bits that has > 5 errors

Since this is a Bernoulli trial with n = 1000, p = 10° Poisson approximation:

P[N >5]=1- P[N <5]

4 gk L 1 Since oo =np \
=1- Y 2= g %=1-¢g 0+ =+ =4+ = =1000(107)
kzo ki © et il 2| | }
=0.00366
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Table 3.2 Continuous r.v. p.101

Uniform Random Variable

Sx = [a; b]
fx(x) = a<=x=<5b
- a
+ b b — a)?
EX] = VAR[X] = . 12‘”
jwb ejwa
® =
Px(0) = 2 — o)
Exponential Random Variable
SX = [OJ 00) |
fxx)=4> x=0 andiA>0"
E[X] = % VAR[X] = 5
@y (w) = A —j

Remarks: The exponential random variable is the only continuous random variable with
the memoryless property.

Gauss_ian (Normal) Random Variable
SX = (—oo,.—{—oo)
—(x—m)%20?2

filx) = ———— —o<x <4 and o>0
2n 0 y

E[X]=m  VAR[X]=
(DX((U) —_ e;mm o2wlf2

Remarks: Under a wide range of conditions, X can be used to approxunate the sum of a
large number of independent random variables.

Cumulative Distribution for Exponential Function

cdf Fx(x) = 0 ifx<0
{ 1-e™ ifx>0
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Table 3.2 Continued

Gamma Random Variable Gamma Function:
= oo [0.0) .
= (O’A; ;H e I(z)= [x*te™Xdx if z>0
14
N AT 0
fx(x) o) x>0 and a>0,A>0

. . with properties:
where I'(2) is the gamma function (Eq. 3.46). \/_
ElX]=a/A VAR[X]= a/A> 0.5 =+vr
1 [(z+1)=z(z) for z>0

Ox(0) = T =ja/n® '(m+1)=m!

Special Cases of Gamma Random Variable
m-Erlang Random Variable: a = m, a positive integer

Al
50 = o

Px() = (/1 = jw)m

Remarks: An m-Erlang random variable is obtained by adding m independent exponen-
tially distributed random variables with parameter A.

x>0

Chi-Square Random Variable with k degrees of freedom: o = k/2, k a positive integer and

A=}
x(k—Z)/Ze —x/2
== >0
fX(x) 2k/2r(k/2) x X
1 k/2
LSS (1 - ij)

Remarks: The sum of k mutually independent, squared zero-mean unit-variance Gaussian
random variables is a chi-square random variable with k degrees of freedom.

Rayleigh Random Variable
SX = [0> Oo)

X
@) =S5 x=0  a>0
(¢

E[X]1=aVm/2 VAR[X]= Q2 - a/2)d?
Cauchy Random Variable

SX = (—oo) oo)

af/n
fx(x) =gy g Te<x<® a>0
Mean and variance do not exist.
Ox(@) = &1
Laplacian Random Variable
SX = (—00) 00)
fxx) = ;—XE““"" —00 < x < 0 a>0
E[X]1=0 VAR[X] = 2/a?

aZ
& =
x(@) w? + ot
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Remarks on Continuous r.v.
1. See Fig 3.12 as a limiting behavior for cdf of a discrete r.v. — uniform cont. r.v.

2. Exp. r.v. is a limiting form of geometric r.v. (Fig. 3.10.a)
# of subintervals until the occurrence of an event X = MT/n
where M: geo. r.v., n: #of Bernoulli trials, T: time interval

t t
t = a\n+1 ﬂ
P[M >t]=P[M >n?]=[1—p]T =[1-)"]T e asn—ow
n

3. Exp. r.v. satisfies the memoryless property: P[X >t+h| X >t]=P[X > h]
Proof:

P[(X.>t+h)n(X >1)]

P[X>t+h|X >t]= forh>0
P[X >t]
~A(t+h)
_PIX>t+h] _e _ e = P[X > h]

P[X >1] e M

4, cdf of Gaussian r.v.: If x’ is the dummy integration variable:
7
1 X —(x-m> . 1 Lo ) X—m
P[X <x]= e o2 X=—"re= | g,dt=0

70 _% ° 27

Standard Gaussian r.v. N(m =0, 6* = 1)

fx 1
9
8

A

m+ 4

5. Q-Function
1

QX)=1-D(X)=—= [e 5 Tail area of the pdf.
27 X
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with Q(O):% and Q(-x)=1-Q(x) (Study Table 3.3, 3.4)
Table: 3.4 “Value of x for which Q(x)=10™"

Approximation for the Q-function:

Q(x) ~ : L eﬁ a=£' b=27
(-a)x+aV@+b V27 i 2

Ex: 3.15  Signalin:V Volts o =107
Signalout: Y=aV +N N = N(m=0, ¢ = 4) Gaussian

Find V such that P[Y<0] = 10°®
P[Y <0]=P[aV + N <0]=P[N <—aV]

A2

v _fo2)
O

107% 5 k=4.753

V =(4.753) Lz =950.6 volts
10~

6) Gamma RV. Pdf

0 1.5

1.4
13 ' Exponential
121~ : . case: =1
b |, L

| 2 Chi-square case:
91 A=1/2

8- and o = k/2
Tk with k>0 integer
61— a =1

5

4

3 a=2

2+

R

0 | +

0 1 2 3 4
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Functions of Single RandomVariable

Define a new r.v. such that: Y =q(X)
Task: Find pdf and cdf of Y in terms of those from r.v. X.

Ex: 3.19  Uniform quantizer: (8-level)

X . input signal to the quantizer and Y = q(x) : quantized output
Sy ={-3.5d, -2.5d, -1.5d, -0.5d, 0.5d, 1.5d, 2.5d, 3.5d}

Rule: All points in the interval (0,d) are mapped to: g(x)=d/2

ad | 7d

2
b}
3d %
- 3d
2d |- 3
Fan 4
| —dd —3d 2d = e
gixl 0 . I HI o ———— —— 1 ¢
4 7:.r.|'_ 2 0 d 2dd 3d el
—d | ==
gl 5
2d 2 |
Jor ]'_f L = ?:f |
wr Ll T
=i L= |

PROCESSING RULE: P[Y in C] = P[q(x) in C] = P[X in B], where C and B
are equivalent events in Sy, Sy

Ex: 3.22 Quantizing Speech samples into 3-bits uniform quantizer

Given X is uniform in [-4d, 4d] and Y = q(X). Find pmf for the quantized signal Y.
The event{Y =q; q € Sy} is equivalent to {X in 14} where I is a group of samples
mapped into a representation point g.

pmffor Y:P[y=q]= | f(t)dt :é Note: 8 outputs are equiprobable.

lq
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Ex: 3.23 LetY=aX+b with Fy (x) anda =0
Find: Ry (y)

{Y <y} occurs when

A ={aX + b <y} occurs.

v

1. If a>0 then A:{X < y;b} and the cdf is written as:

Fy (v) = P{X < y;b}: Fy (y_—b) fora>0

a

-b
2. Ifa<0then A:{X>y }

a
y-b y-b
=P X > =1-Fy| —
R =P x|y (22
pdf: Using the derivative rule: aF = dF du and u= y=b ; We obtain:
dy du dy a
L [X=2) ifaso
MR LR e
—lfx[X19jufa<o g a
a a

Ex: 3.24 Given X with a Gaussian pdf: N(m,o?) and Y = aX + b. Find f,(y)
1 2952 1 1 2 2
fy ()= X=M/26" _socx<oand fy(y)=——=—¢ (Y-b—am~/2ao)
X¥= s Y=

It is also a Gaussian r.v. with mean b+am and st.dev. |a|o
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Ex: 3.25 Given: Y = X% find cdf and pdf of Y
{y <y} is equivalent to saying: x2<y and —\[y<X <./y fory>0.

&

This results in a cdf:

FY(y):{FX(\N)_FX(_\N) if y>0

0 if y<o0

fx (\/V)_ fx 4Y)

By )= y
o YT 2y -2y
d 0 y<0

>0

Multiple Roots Case: Y =g(X) C,={y<Y<y+dy}
In this case, g(x) =y has multiple solutions: Xi, Xy, Xs,...

y=gx)#

y+dy

X x1+dxl X5 +dX2 Xy X3 X3+dX3
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B, has equivalent events: By = {X;<X<x3+dX; U ... U Xg<X<X3+dXs}

P[Cy1= f, (y)dy|= P[B]= i (x| dxg| + Fy (xp)[dxo | + fx(xg)\dXB\

Ex: 3.28: Samples of a sinusoid. Let Y = cos(x) and X is uniformin (0, 2x).
Find pdf and cdf of Y?

1
Since X is uniform we know that: fy (X)= <2, 0<x<27
0 Otherwise
1
When 0 <x<2n
We have,
-1 < y < 1 0‘5 .........................
y = COS(X) = Xg= COS_l(y) .....................................
X1 =27 - X
o0 111 2n 7'cos“y | *
-0.5 —
-1
But

%lxo =—sin(xq) = —sin(cos 1 (y)) = —y1- y?

which results in a pfd:
1/2rx 1/2x 1/ 7
fy(y)=

Jl—yz Wl—(—y)z ) Jl—yz

for -1<y<1

cdf becomes an arcsine distribution:

0 if y<-1

sin_1 y

y NN
Fy(= ] fyly)dy =\-+

— 0

if —1<y<1
T
1 if y>1
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Expected values:

Expected Value (mean): E[X]= [t.fx (t)dt

o]

E[X]= Of|t| fy (t)dt <oo

— 0

46

E[X]=2 xk .Px (Xx) The mean exists if

or E[X|] :%‘Xk‘PX(xk)<oo

FIGURE 320

Thaz crap ks shoest 150 12kl

|
i
'ﬁwﬁfiﬁ@ﬁ M T i

=7

|:I

'rIl III Il’I I"'ﬂ- I!J.'I 140 150

tul:l '.‘-!I HH-

|b b2-a% a+b
2(b-a) 2

if x:continuous

if k:discrete.

Top curve of the2ezenimants piabding
varies around | FPTUREERERE
5.0 and wide r:;i‘ﬂ!‘!"l.l'!‘i!‘iil’ﬁ'l:ﬁ":: ahoat
Spread theveloe Ewhile ¥ latas xz
wletg oeveas At i
ass e 1l X5 mane skl
afihean ¥
Bottom curve
varies around
0.0 and little
enraan L
Ex: 3.29  Uniform r.v. — pdf/mean
1
—— a<x<b
fx X)=1b-a
0 Otherwise
b
a, _
Notes: If X >0, then
o0
E[X]= J@- FX (t)dt
0
o0
E[X]= X P[X >Kk]
k=0
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Ex: 3.31 Inter-arrival time average. fy(X) is exponential with A and 1/A seconds
per customer:

Q0 Q0
E[X]=[tle~ Mdt=—te= | + [~ Mdt
0 0

When we use the integration by parts with the terminology:
fudv=uv—fvdu u=t, dv=Ae Mt

which results with the expected value:

oAt
E[X]= lim te=A-0+—% —|¥=
{>w A

Variance and standard deviation of X:
o % =VAR[X]=E[X ~E[X]]?
oy = STD[X] = \VAR[X]

In practice we use a slightly different version for the variance expression:
3= E[X 2 _oXE[X]+ E[X]z} - E[X 21-E[X]?

Ex: 3.36  Variance of uniformr.v. X fora<x<b

b 1 b2 1 (b-a)/2
o=t x-2 j dx=(—). |

- yZdy
—a _(hb-a)/2

(-2} (b-a)?
T 12(b-a) 12

In the above integral we have used a change of variable: y=x —aTer dy = dx

Ex: 3.38 Variance of a Gaussian r.v.

1 0 x—m)2 0 (x—m)2
N (] e‘T‘%dX) =1 = ) e—T‘%dx =27 oy
T ox —w —o0

which can be re-written by differentiating with respect to: &

2 2
© (x—m (x=m) —
—0 X

Let us re-arrange this result to obtain the expression for the variance:

1 0 (x-m)?
2_ . Xx—m)2 o= - 5 dx
N ar gy M 20t
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Notes: 1) VAR[C]=0
2)  VAR[X+C] = VAR[X]
3)  VAR[CX] = C*VAR[X]

s EIX"1= [x"f (xdx  n"™ momentof rv.X

Ex: 3.39  Uniform Quantizer: X = q(X) from 2% levels (R-bit) with a
Quantizing Noise: Z = X-q(X)

FIGURE 1.22 .
Theuaitone quandizen e ler 1
3P 7 i5 = o}

d: step size

-d/2<Z<d/2
and

~Xmax < X < Xmax

= Xmax = 2°d

Using
2 42
E[Z] _diz-diz_, (Zero-mean) and VAR[Z]= [d/2-(-d/2)]" _d*
2 12 12
Recall:
X-Z=q(x)
Signal-Quantizing Noise Ratio:
R VAR[X] _ VAR[X] _ 3VAR[X] 22R
VARIZ]  d%/12  x&u

However, almost always, we express the SNR in decibels (dB)
SNRyg =10log;9 SNR ~ 6R —7.3dB

In the last approximation, we have used the industry standard: X, =4 oy kKnown
as the 4-sigma loading condition.

Each additional bit doubles the number of quantizer levels and the step size d is
reduced by a factor of 2 = VAR[Z] will be reduced by 2 = 4
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MARKOV and CHEBYSHEV INEQUALITIES

Let X > 0 and mean = E[X], then the Markov Inequality is written by
P[Xzﬂs% for x>a

E[X]= ?t f X(t)dt+Tt f X(t)dt > Oft f X(t)dt > Ta f X(t)dt
0 a a a

which result in:

E[X]> aT f ()dt=aP[X >3]
a

= P[X>a]< ELX]

Let X have a mean m and VAR[X] = 5¢ then

P[X -m/>a]=P[-a>X -m>a] Chebyshev
Inequality

<N

o

=P[-a+m>X >a+m|< X
32

Ex: 3.41 For aresponse time=15s.
St. dev. of resp. time = 3 s.
Find prob. that the response time > 5 s. from mean

m=15s. c=3Ss. a=5

P[X ~15/>5]< 2 =0.36
25

(Skip 3.8 Fit of Distr. Of Data)
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Characteristic and Probability Generating Functions

Characteristic function:

Oy (W) = Efe %X = 1, ()X d

1) @y (w) is the expected value of a fn of X: g(Xx)=e!"* g(x) = &M~
2) @y (w)is the Fourier Tx. of pdf fy(x).

In which case, the inverse Fourier Tx:

fy ()=3 oy (W)}=% [y (w)e WX dw

—0o0

If X is a discrete r.v. then
Dx (W) =% Py (Xk ) e WXk

Furthermore, if Xy is integer then:

Ox (W)= 3 py (K)elW

k=—c0

which is the Fourier transform of the probability mass function p(k).

Inverse Fourier TX.:

2 .
Py (k) :2i jq)x (w) e_JWk dw for k =0,£1,%2,...
70

Ex: 3.47 @y (w) for the exponential r.v. X:

—A.X
Ae x>0
fX(X):{ 0 x<0

Dx (W) = [Ae P elWrdx = 4 [e~(A=W)Xgx
0 0

A
W)=—
Dx (W) W

Ex:3.48  ®,(w) for geometric r.v.

Dy (W)= X pgX ek = p Z(qelw) =p
k=0 k=0

1-qelW
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Moment Generating Function:

E[X ] 2 d” cDX(W)lw_

J” dw"

Proof: Expand characteristic function in a power series expansion:

(jWX)Z +(jWX)3 +... :|dX
21 3!

Dy (W) = T f X(x)[l+ jwix +

—00

(J)

=1+ jw [ xf (X)dx+-——

I x% £ (x)dx+...

=1+wa[X]+(j‘£’? E[X2]+..+ (J‘r’]v) E[X"]+...

If we differentiate once wrt to w and setw =0

e, =JEX) = EXI=Z o

Differentiate twice and set w = 0 yields
d? ~ 2
0], o= EDX?)

Similarly,
d n

dw"

o], = I"EX"]

Ex: 3.49  Exponential pdf and char. fn: @, (w) = 7 Ajw

Let us differentiate it once:

. ]
) =
G
We obtain:
CDX(O) i
E[X]——J -

Similarly, one more differentiation results in
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Dy (W) = — 3
(A-jw)
ex2) =220 _-24_ 2
2 _3 42
Using these two statistics we compute the variance:
2
o2 =VAR[X] = E[X 2]- E[X]? :i_(lj _ 1
2 12

pdf and pmf Generating Functions:

PDF Generating Function:
1)  Gn(2) is the expected value of a function of N : g(N) = zN
2)  Gn(2)isthe z-Tx. of pmf and ®@y(w) = Gy(e™)
Similarly, pmf gen. fn:
oo L d K

pn (k) —mdz—kGN (Z)L:O

with statistics:
. d 3 k1| _ & _
N = Gn ()], = T oy = T Kpy () = EIN]

and
d2 = k-1] _ <&
7N @],y = > py(k(k-Dz |Z=1—k§Ok(k—1) MO
= E[N(N =1)] = E[N?]-E[N]
Furthermore,
E[N]=GN (@)

VAR[N]=G} () +Gj () -[GR 0]

Ex:3.50  Poisson r.v. with parameter o :
w [k
Gn(2)= X {a _“}Zk

- €
k=o| k!
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Gn(2)=e? § (akz)| =g g% =22
k=0

Taking the first two derivatives: G’y (z) =ae?@D; and G (z) =a? e*z D
yields the answer:
E[Nl=a and VAR[N]=0% =a’+a-a’=a

Laplace Tx of pdf (Nonnegative continuous r.v.)
o0 n
X“©)=[f,()edx=Ee| g EIX"-()" L
0 ds" s=0

Ex: 3.51 Laplace Tx method on Gamma pdf:
x ooﬂaxa—l e_,ix ~ /10{ o
X (s)= [F—"— X dx = X% (ﬂmts)xdX
v @ ° " T

Using the following substitution of variable: y=1+s
0[
1 C 41 _
X (s) = J y“ e Vdy
(@) (4 +5)
04 (24
_ 2 L gy 2
(@) (1 +5)? (A+5)%
The expected value and the mean-square value:
d A ai®

E[X]=——- -—= ] ==
ds (1+5)*Is=0 (A+5)* =0 4
2 o o
E[X 2] :d_z A | _ a(a +1)/12 _ a(a2+1)
ds® (A +5)* =0 (1 +5)%* ls=0 A
Finally, the variance:
_ @ a+l) a? «a
o2=E[x?]-E[x)? =2 @ _ @
A A A

(Skip 3.10, 11 and 12)

#3.1 Urn contains 90 -- $1; 9 -- $5; 1 -- $50 Let X be denomination of bill
a) Describe space, S. Specify probability of events
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The sample space has 100 elements, with each element corresponding to a bill. S =
{&1, &, ...,E100} Where &; represents the i" bill. All bills are equiprobable

P[{&i }] = 1/100
b) Describe sample space. Find Probabilities.
X is the denomination of a bill. There are three denominations, so: S, = {1,5,50}.
The probability of a denomination is proportional to the number of bills with that
denomination:
P[X=1]=P[{§: X(&) =1}] =90/100 = 0.90

P[X = 5] = P[{& : X(€) = 5}] = 9/100 = 0.09
P[X = 50] = P[{¢ : X(&) = 50}] = 1/100 = 0.01

#3.6 Plot Fy(x) in problem #1

Fx(X)4

»

0.99 10

0.90

v
X
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#3.12 Let U be uniform r.v. in the interval [-1,1].
Find P[U > 0], P[U < 5], P[|U| < 1/3], P[1/3 < U < 1/2], and P[|U| > 3/4]

1

Fu(u)
(DR

I I
-1 0 1

v

P[U>0]=1-P[U<0]=1-F,0)=1/2

PlU<5]=1

P[U| < 1/3] = P[-1/3 < U < 1/3] = Fy(1/3) - Fy(-1/3) = 2/3 - 1/3 = 1/3

P[1/3 < U < 1/2] = Fy(1/2) - Fy(1/3) = 3/4 - 2/3 = 1/12

P[|U| > 3/4] = 1 - P[|U| < 3/4] = 1-[Fy(3/4) - F.(-3/4)]=1-[7/8-1/8] =1/4
#3.19 fu(X) = { cX(1-x) 0 <x<1

a) find c? We use the fact that the pdf must integrate to one:

1 1 X2 x31 c
1=[f (X)dx=c[x(@-Xx)dx=¢|—-—| =— = =6
0 0 2 3 6
0
b)  find P[1/2 < X <3/4]?
. 31 34 23 3/4
P{—SX < ] 6 [X(1—x)dx = 6 X =0.34375
2 4 1/2 2 3
1/2

c) find Fy(x)? for 0<x<1
e Wy av? 53
Fx(X)=]f,(x)dx =3x" —2x
0

forx<0,Fy(Xx)=0; forx>1 F(X) =1,
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#3.32 X is binomial r.v. ntrials p = prob. of success

a) Let I, denote the outcome of the kth Bernoulli trial. The probability that the
single event occurred in the kth trial is:

Plix=1 and ;=0 forall j=Kk]|
P[X =1]
kth outcome
_ P[00..1 0..0]
- P[X =1]

pl-p)"t 1

“[pa-pyt

Thus the single event is equally likely to have occurred in any of the n trials

Plix=1X =1]=

b)  Suppose X = 2. Find prob. two events occurred in j" and k™ trials
j<k

The probability that the two successes occurred in trials j and K is:

Pl j=L1x=L1,m=0 forallm= jk|
P[X =2]

_p*a-p"t 1

(Bh2a-p"? (3)

Pl =11 =1]X =2]

Thus all ('2‘) possible devices of j and k are equally likely.

c¢)In what sense are successes distributed “completely at random”.
If X =k then location of successes selected at random from among the

( E ) possible permutations.
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#3.51 r.v. X has Laplacian pdf

o e—a|x|

fy(X)= where o >0,—0< X<

X is input to 8-level quantizer (Ex: 3.19)

Find pmf.  Find prob. X exceeds range + 4d

9x

Since symmetric pdf, we utilize it to find:

-3d ,, joX
P[Y =3.5d] = P[Y =-3.5d]= | “%dx B

2
-2d ae(XX 1
PIY =2.5d] = P[Y =-2.5d] = | = —dx :E(e—Zad _e—Sad)
—-3d
—-d ox
P[Y =1.5d]=P[Y =-1.5d]= | “erx =%(e_“d _ g2
-2d

ax 1

0 ye
P[Y =0.5d] = P[Y =-0.5d] = | de=§(1—e_“d)
—d
—4d ae“x
PIY|>4d]=2 | %5 —dx= g4

#3.56 If current X is zero mean Gaussian r.v. Find pdf of power (Y = RX?)
X ~ N(0, o)

F e () =PIRX? <y1=P- [y IR < X < [y R
-FWYR)-F7R)  y20
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N R A
owr ) T2 VIR R —2JyIR R
f(f) (F) 1 ( y)

p —
2R\/y/R 2R,y / [27a?Ry 2a°R
#3.74 Let Y = Acos(wt) + C E[A] =m
w, C : constants oa’ = 6

E[Y] = E[Acoswt + C] = E[Acoswt] + C = E[A]coswt + C = mcoswt + C
oy’ = E[Y?] - E[Y]?

E[Y?] = E[A’cos’wt + 2ACcoswt + C?] = E[A’]cos’wt + 2CcoswtE[A] + C*
= (0% + m%)cos’wt + 2mCcoswt + C

ov> = E[Y?-E[Y]
= (6% + m%)coswt + 2mCcoswt + C* — m?cos’wt - 2mCcoswt - C?
= o’cos’wit

#3.88 Find characteristic function of the uniform r.v. in the interval [a,b]
Find mean and variance.

0 we g b 1 w4 ejwb_ ejwa
w)= |f X X=|— X =
@ x (W) _foo x (X)e ib—ae P
E[X]_£M| __i[_lbz 1 2}=£(b+a)
b-a| 2 2 2
E[X 2] = 1 d ‘DX(W) #[——Jb 1Ja3}:1(b2+ab+a2)
j dw j(b—a) 3 3

3 21 2 _1.2 2y 1 2 _ 1. 32
VAR[X]=E[X“]-E[X] 3(b +ab+a“) 4(b+a) 12(b a)
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