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Chapter 8:  Multiresolution Image Representations1

 
The main purpose of this section is to introduce the theory of multi-resolution image decompositions, 
filterbanks and wavelets. 

Pyramid Representations 

Gaussian Pyramid:  In a Gaussian pyramid multiresolution image representation, the original 
 image appears at the bottom of a stack of images. This image is low-pass filtered 

and subsampled by a factor of 2 in each direction. The resulting  image  
appears at the second level of the pyramid. This procedure is repeated as many times as desired. If a 
low pass filter with a truncated Gaussian impulse response is used, then the resulting pyramid is 
generally known as a Gaussian pyramid. 
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In order to eliminate aliasing an ideal low pass filter with cut off frequency 2/π=cw  is required at 
every stage. However, the ideal filter is infinite extent and non-causal, thus it cannot be realized. 
Hence, a length 2L+1 truncated Gaussian filter, with the impulse response: 
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This filter is often used to filter the image horizontally and then vertically. A common choice is a 3-
tap Gaussian filter where h(n)={ ¼, ½, ¼}. 

The Gaussian pyramid is labeled as an over-complete (redundant) representation since the total 

number of pixels in the pyramid approaches: 21212121 4
316/4/ NNNNNNNN ≈+++ L , which is 

larger than which is larger than N1 N2. Furthermore, since the Gaussian filter has significant leakage 
beyond the frequency 2/π=cw , images in the upper levels has aliasing.  
Gaussian Pyramid:  The Laplacian pyramid contains differences between successive levels of the 
Gaussian pyramid. In order to construct a Laplacian pyramid, we start with the lowest resolution 
image in the Gaussian pyramid, and interpolate it by a factor of 2 in each direction, then take the 

                                                           
1 This chapter is primarily based on lecture notes provided by Prof. A. Murat Tekalp of Koç University, Istanbul, Turkey.  
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difference between this interpolated image and the same size image (next higher resolution level) in 
the Gaussian pyramid. The linear interpolation filter with the impulse response h(n)={ ½, 1, ½ } is 
often used for interpolation.  
An alternative approach to obtaining the difference images is filtering the original image by the 
difference of two Gaussian filters or a Laplacian filter, hence the name Laplacian pyramid or a 
bandpass pyramid. Thus, a 3-level Laplacian pyramid consists of one low-resolution picture and two 
successively larger difference images. The difference images contain image detail that is significant 
at each scale. In theory, it is possible to recover the full-resolution image by adding the difference 
images to the interpolated images at each level successively. Thus, Laplacian pyramid can be used for 
progressive image compression and transmission. 

Filter Banks: The over-completeness of the pyramid representation often is not desirable. The 
subband and wavelet representations are complete multi-resolution representations, where the number 
of pixels in the multiresolution representation is exactly the same as in the original image. The 
benefit of a complete (non-redundant) representation comes at the expense of more complex filtering 
requirements. The filterbanks are the building blocks of the subband and wavelet representations. A 
2-channel analysis-synthesis filterbank is shown below. 

 
Each filterbank consists of a pair of low-pass and high-pass filters, whose frequency responses are 
shown below. 

 
We will first provide a mathematical analysis of a 2-channel analysis-synthesis filterbank. Then, we 
discuss procedures for filter design for multiresolution image generation.  
Analysis of 2-Channel Filterbank:  Consider the following system: 
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The intermediate sequence y(n) is simply: )2()( nvny =  and  
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and the z-transform yields the discrete transfer function: 
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The output w(n) can be written as follows2: 
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Alias Cancellation Condition: Since the second term is due to aliasing left after analysis-synthesis 
filtering, the aliasing can be eliminated if the filter transfer functions satisfy the condition: 
  0)(.)().( =−+− zHGzHzG hhll

Perfect Reconstruction Condition: It is possible if the filter transfer functions also satisfy the 
condition: 
  k

hhll zzHGzHzG −=+ .2)(.)().(
where k is the amount of delay. Then the output of the analysis-synthesis filterbank is equal to the 
input up to a scale factor of 2. That is, ).(.2)(ˆ lnsns −=  

Other Requirements: 
1. It is good to have all filters are from FIR-class:  )(,),(),( zHGzHzG hhll

2. They exhibit linear phase, which implies that their impulse responses are symmetric or 
anti-symmetric. 

3. They are orthonormal, which implies that the energy of the signal is preserved under the 
transformation. 
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Orthogonal FIR Filterbanks:  For orthonormal FIR filterbanks, synthesis filters are chosen as time-
reversed versions of analysis filters, and they are given by: 
     )
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Furthermore, high-pass filters are modulated versions of the low-pass filters, given by: 
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2 The reader is referred to p. 66 and p. 111 for details in M. Vetterli, and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, 
1995. 
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Analysis filters satisfy the orthogonality condition: 
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Equivalently, in the z-domain: 
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which are also known as Smith-Barnwell Filters for perfect reconstruction (filter lengths must be 
even.) 
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Linear-Phase FIR Filterbanks;  Bi-Orthogonal Filter Banks: Perfect reconstruction 
 2,1,],[].[]2[],[ =−>=−−< jipjipngnh ji δδ  
or equivalently in the z-domain: 
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QMF Filters: Alias-free reconstruction, linear phase 
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Second relation can only be approximated (not perfect reconstruction), e.g., Johnston filters 

Wavelet Transform:  Wavelet filters possess an additional regularity constraint, that is, the 
prototype filter has a zero at the frequency )(1 wH π=w .  In order to decompose an image into a 
wavelet representation, the same filters are used both horizontally and vertically as follows:  

 
Moreover, the composition is done in multiple stages, where the LL band is further decomposed 
into four bands. The corresponding frequency bands are shown below. 
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Example: 2-level decomposition of Birds3:  

     
  Coded Bitrate :  8.00 (bpp) 
  Mean Square Error :   0.0 
  Signal-to-Noise Ratio:  52.9 (dB) 
PSNR   :  67.7 (dB) 
 

Example: 3-level decomposition of Birds:  

     
  Coded Bitrate :  8.00 (bpp) 
  Mean Square Error :   0.0 
  Signal-to-Noise Ratio:  47.3 (dB) 
PSNR  :  62.1 (dB) 
 

Example: 7-level Wavelet Decomposition and a target encoding rate of  0.5 bpp for Birds:  

   
SPIHT Encoder:     SPIHT DECODING RESULTS: 
  Target bit rate  :  0.50 (bpp)      #Wavelet resolution levels :  7 
Target file size  :196608 bits  Decoded Bitrate  :  0.50 (bpp) 

       Smoothing level  :  0 
       Mean Square Error  :   4.2 
       Signal-to-Noise Ratio  :  27.1 (dB) 
       PSNR    :  41.9 (dB) 

Example: Wavelet Toolbox demo examples in Matlab. 
                                                           
3 These examples are generated using VCDemo from Delft University of Technology, Holland. (Courtesy of Prof. Reginald 
Lagendijk.)  URL: http://www-ict.its.tudelft.nl/vcdemo
 

© Hüseyin Abut, August 2005 

http://www-ict.its.tudelft.nl/vcdemo


78 

Analysis of 2-level wavelet decomposition:  Let  )()();()( 1221 zHzGzHzG −−=−−=  
Then the perfect reconstruction (PR) condition becomes: 
    kzzHzGzHzG −=+ .2)().()().( 2211

where k is odd integer. Let us set: 
    )().()( 11 zHzGzzP k+=
Then PR condition is given by 
    2)()( =−+ zPzP
We now express P(z) as a series in z. All even powers must be zero, except the constant term which 
must be 1. 
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In order to design a 2-channel perfect reconstruction (PR) filter bank for wavelet decomposition, it is 
necessary and sufficient to find a P(z) that satisfies P(z)+P(-z)=2, and factor it as  to 
compute the filter transfer functions. 
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Wavelet Filter Design Procedure: 

(1) Specify the product filter P(z) as described above. 
(2) Obtain     )(.)(1 zPzzP k−=
(3) Factor  )().()( 111 zHzGzP =
(4) Set H2(z) = G1(-z) and G2(z) = -H1(-z) 

 
Example: Haar (Daub2) Wavelets 
Let  1)2.(2/1)( 1 =++= − kwherezzzP
Then  2121 )1.(2/1)21.(2/1)( −−− +=++= zzzzP
Partial fraction expansion of the last expression yields results for step (4) above: 
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There are several wavelet design types and associated design algorithms, which are explained in 
detail in Vetterli and Kovacevic mentioned earlier as well as in Bovik4.  
 

 

                                                           
4 Handbook of Image and Video Processing, ed. Al Bovik, Academic Press, 2000. 
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