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3. Binary and M-ary Digital Communication Techniques (Baseband) 

3.1 Error probability computation 
We will first consider the "antipodal" and "orthogonal" binary signal sets and the performance 
bounds of Digital Communication Systems. Then we will extend this to "multi-level" signal sets to 
study, in particular, the QAM, QPSK, MPSK and other signaling cases. We will also present 
architectures for some of these systems. 
• Binary Antipodal Signals. In general, two signal vectors each with probability 1/2 can be any two 

points in space as shown below.  
• From the performance (in terms of BER) signal configurations can be rotated and translated such 

that the centroid coincides with the origin of the coordinate system and the results are identical. 

 
Figure 3.1 Signal-space geometry for generic binary detection. 

 
• Optimal receiver for two equiprobable signals is a 2-channel correlator or 2-matched filters. 

However, we can realize the same decision by use of the receiver below, which correlates with 
the Difference Signal: ) . If the energies are not equal, we add a D.C. bias as shown or 
adjust the decision threshold. 
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Figure 3.2 Optimal Binary Correlation Receiver with a single integrator. 

1. Mean of the random variable at the output of the correlator: 
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2. The difference between the two means is: 

∫ =−=−≡Δ
0

2
10

0
10

2)]()([2
N

Edttsts
N dμμμ              (3.3) 

where  is the energy in the difference signal. dE
3. Variance of the decision variable: 
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the last equality is due to the fact that noise is White Gaussian and S.I. with the signal set. The 
conditional pdfs for general binary detection is depicted as two Gaussian probabilities centered at 
respective mean values: 

 
Figure 3.3 Conditional p.d.f for generic binary detection and error regions. 

4. Optimal threshold is the midway between the two means and a BER occurs if decisions fall into 
Gaussian tails above.  

5. Error probability is simply the Gaussian tail integral defined in terms of Q function in Chapter 1: 
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6. The total BER for a general binary digital communication system is finally given by: 
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7. From the Figure 3.1, we see that the only component of noise vector harmful to the decision 

process is that component in the direction along the line connecting . By symmetry, this 

component is also zero-mean with variance  If this noise variable is more positive 
than  then an error occurs: 
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    From symmetry, we have: 
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 3.2 Antipodal Binary Signaling 

If we choose the signaling design such that )()( 01 tsts −=  with equal energy: 01 EEEs ==  

and sEd 2= , we have the final Bit Error Rate (BER) for Antipodal Binary Signaling:  

)2()(
0N

EQPBER s
antipodal == ε                 (3.9) 

Example: Several different antipodal designs with varying degree of simplicity are shown below: 

 

 

 
Figure 3.4 Examples of antipodal signals. (a) Manchester or split-phase, 

(b) half-cycle sinusoid, (c) spread spectrum signal set. 
 

3.3 Binary Orthogonal Signaling 
The signals or the codewords are place at each orthogonal axis as shown below. Both signals 

along two different axes have the same energy, but the distance between them is only 
2/1)2(

01 sEsEsEd =+=  due to triangle law. This slightly affects the BER: 
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Figure 3.5 Constellation for binary orthogonal signals and binary on-off signaling. 

 
Example: Two sample waveforms consisting of Pulse Position Modulation (PPM) and FSK are 
shown below: 

 
BER or Probability of error comparison of these two alternatives are shown below: 

 
Figure 3.6 Probability of error for binary antipodal and binary 

orthogonal signaling with equally likely messages. 

3.4 ML Receivers for Bi-Orthogonal (4-PSK) and Multilevel (QAM) Signals 
Below we have two popular constellations for passband PAM transmission, samples from their 
received signals in an AWGN regime and the optimal decision regions, respectively, where the 
constants b and c are related to power in each case. 
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Figure 3.7 4-PSK and 16-QAM constellations for passband transmission. 

Constants b and c affect the power of the transmitted signal. 
 

 
Figure 3.8 Received samples corrupted by additive Gaussian noise from a 

Gaussian cloud around each of the points in the signal constellation. 

 
Figure 3.9 Decision regions for ML detectors for 4-PSK and 16-QAM 

constellations of Figure 3.8 
 

3.5 Performance Bounds on Message Sets with Equal Probability in AWGN 

Assume that the message set has M letters in its alphabet and they are equally probable; AWGN PSD 
level is ; the nearest neighbor distances between 0N iS  and its nearest-neighbor (NN) is given by 

 Binary error probability has a lower bound:  }.{ mini
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Similarly, the upper bound for this error probability is found by using the "Union Bound Theorem" 
as: 
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where is the distance between iijd th and jth signal locations in the N-dimensional space. For the ith 
signal, the inner sum is bounded by M-1 times the largest term of the sum, which occurs when, is 
minimum over j. This results in: 
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The last inequality is the case for all are equal distances by symmetry. The difference between 
(3.11) and (3.13) is a multiplier (M-1). For fairly small M these two bounds are rather tight but they 
get looser if M is large. Let us plot the performance as a function of normalized signal-to-noise ratio, 
where: 
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Figure 3.10 Symbol error probability for coherent detection of  

M-orthogonal signals. 
 
 
Example: M-ary Signal Constellation Designs. 
1. Bi-orthogonal and Optimal Sphere Packing (Hexagonal) Constellations: 
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Figure 3.11 Optimal hexagonal constellations. For M=16 constellation the 

decision regions have been explicitly shown. The outer decision regions are 
approximated as hexagonal for uniformity. 

 
2. Practical and Common QAM Constellations: 

 
Figure 3.12 Cross constellations. 

 
3. PSK and Combined Constellations: 

 
Figure 3.13 Constellations using combinations of PSK and AM. 

 
M-ary Bi-orthogonal Designs 

Let us augment the orthogonal signals with their negatives. Thus, we have an M-ary bi-orthogonal set 
formed as the union of an (M/2)-ary orthogonal set ,...}1,0);({ =its  and its complementary set 

.  ,...}1,0);({ =− its
• Optimum receiver correlates the incoming signal with all the members of the complete orthogonal 

set and then finding the signal with the largest magnitude. The sign of this correlation reveals 
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whether the decision should be in favor of an index in the correlating set or an index in the 
complimentary set as shown below. 

 
Figure 3.14 Bi-orthogonal receiver for M/2 Channels. 

• Performance of these receivers: Assume that the message  is sent, the r.v. 

 is Gaussian with mean: 
0ssignalitsandmo
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bound in (3.13) the probability of correct decision becomes: 
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As expected, this integral is not easy to find a compact result, and hence, it is normally evaluated 
numerically. Below is the plot of error probability for a number message sizes, M. 

 
Figure 3.15 Symbol error probability for coherent detection of bi-orthogonal signals. 
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• As M increases the energy efficiency improves steadily (or the resulting error probability 
decreases for a given operational level.)  

• Simultaneous observations of the plots for "orthogonal and bi-orthogonal" designs reveal that the 
latter is superior especially for small M. 

• The cost is the need for the receiver to distinguish a signal from its compliment. 
• This last point implies phase synchronization in carrier modulation schemes. 
• Regarding the BER for bi-orthogonal signals, we note that there are two types of error events: 

1. Choosing   instead of . 0S− 0S
2. Choosing one of the M-2 signals orthogonal to  .0S

Example:  Case for  M=8 and Fixed: .0.5/ 0 dBNEb =  
• Since .80.948.98log.16.3/16.30.5/ 200 dBNEdbNE sb ===⇒==  

• Orthogonal Signaling Curve:     3105.6 −== xPBER s

• Bi-orthogonal Signaling Curve:  3108.5 −== xPBER s

• Let us use rectangular pulses for this signaling as shown below: 

 
• We can use Hadamard matrices to generate order 8 as an extension of order 4: 
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• We choose 8-rows of the Hadamard matrix order-8 similar to shapes in the figure for the 8-ary bi-
orthogonal signal set. Note that the first element in all rows is "1" and lends no distinguishability 
to the signal set and it can be eliminated without loss in performance. 

• Benefit is to decrease the energy per bit to 7/8 of the former value. 
• Finally, the dimensionality is reduced to "seven", resulting in a need to use "7" non-overlapping 

pulses as the basis functions. 
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